
MEPHESTO: Modeling Energy-Performance
in Heterogeneous SoCs and Their Trade-Offs

Mohammad Alaul Haque
Monil

University of Oregon
mmonil@cs.uoregon.edu

Mehmet E. Belviranli
Colorado School of Mines
belviranli@mines.edu

Seyong Lee
Oak Ridge National Laboratory

lees2@ornl.gov

Jeffrey S. Vetter
Oak Ridge National Laboratory

vetter@computer.org

Allen D. Malony
University of Oregon

malony@cs.uoregon.edu

ABSTRACT
Integrated shared memory heterogeneous architectures are perva-
sive because they satisfy the diverse needs of mobile, autonomous,
and edge computing platforms. Although specialized processing
units (PUs) that share a unified system memory improve perfor-
mance and energy efficiency by reducing data movement, they also
increase contention for this memory since the PUs interact with
each other. Prior work has investigated performance degradation
due to memory contention, but few have studied the relationship of
power and energy to memory contention. Moreover, a comprehen-
sive solution that models memory contention for kernel placement
on contemporary heterogeneous systems on chip (SoCs) in response
to energy and performance has been largely unaddressed.

This paper presents MEPHESTO, a novel and holistic approach
for managing this balance. The authors characterize applications
and PUs in terms of two memory contention factors—time fac-
tors and power factors—to achieve the desired trade-off between
energy and performance for collocated kernel execution on het-
erogeneous systems. The authors believe that this investigation is
the first to combine all of these factors and present a simple knob-
based approach that expresses the target trade-off. The approach is
evaluated on a diverse integrated shared memory heterogeneous
system with a CPU, GPU, and programmable vision accelerator.
By using an empirical model for memory contention that provides
up to 92% accuracy, the kernel collocation approach can provide
a near-optimal ordering and placement based on the user-defined,
energy-performance trade-off parameter. Moreover, the dynamic
programming-based heuristics provide up to 30% better energy
or 20% performance benefits when compared with the greedy ap-
proaches commonly employed by previous studies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’20, October 3–7, 2020, Virtual Event, GA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00
https://doi.org/10.1145/3410463.3414671

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
Heterogeneous (hybrid) systems; System on a chip.

KEYWORDS
Memory contention; Heterogeneous systems; Energy-performance
trade-off; System on a Chip

ACM Reference Format:
Mohammad Alaul Haque Monil, Mehmet E. Belviranli, Seyong Lee, Jef-
frey S. Vetter, and Allen D. Malony. 2020. MEPHESTO: Modeling Energy-
Performance in Heterogeneous SoCs and Their Trade-Offs. In Proceedings of
the 2020 International Conference on Parallel Architectures and Compilation
Techniques (PACT ’20), October 3–7, 2020, Virtual Event, GA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3410463.3414671

1 INTRODUCTION
Heterogeneous systems are a popular solution for overcoming the
temperature barrier when designing processing units (PUs) with
high computation capabilities [28, 32]. Although powerful CPUs
once dominated computing, GPUs and multi/many-core CPUs are
now the go-to solution for high-performance systems [23]. Follow-
ing this trend, special-purpose hardware for emerging domains—
such as tensor PUs, bionic processors, and vision accelerators—
have become a commodity in data centers, mobile devices, and
autonomous platforms. Moreover, chip manufacturers are embed-
ding a variety of PUs that serve different types of computing needs
on a single die in the form of integrated shared memory heteroge-
neous systems (iSMHS) [37]. Although Intel’s Ivy Bridge [11] and
AMD’s Fusion [3, 31] architectures were among the early systems
that combined two compute capable PUs (i.e., CPUs and GPUs)
under the same memory subsystem, later generations of integrated
heterogeneous systems—such as NVIDIA’s Tegra Xavier, Apple’s
A12 Bionic chip, and Qualcomm’s Snapdragon 855 system on chip
(SoC)—have brought the degree of heterogeneity within the same
chip to extreme ends. In such systems, dozens of PUs with diverse
instruction set architectures work together to accelerate kernels
that belong to emerging application domains.

One of the most prominent features of iSMHS is that all PUs can
directly access the systemmemory, alleviating additional data trans-
fer costs between the CPU and device memory [7]. The optimal
use of these systems heavily relies on collocating tasks simulta-
neously in different PUs while using the system memory as an

https://doi.org/10.1145/3410463.3414671
https://doi.org/10.1145/3410463.3414671

intermediate medium for inter-PU data communication. For exam-
ple, an iSMHS for an autonomous car must simultaneously run
image and video processing, inference for object detection, and
other decision-making continuously in a pipeline-like execution
scheme.

Collocated kernel execution on an iSMHS will likely cause con-
tention on the shared memory bus, and the resulting interference
could negatively affect perceived bandwidth (BW) on collocated
kernels. Several studies [4, 7, 15, 37] focused on identifying themem-
ory access patterns of collocated kernels in CPU+GPU iSMHS and
suggested smart scheduling mechanisms to minimize contention
effects, mostly via ad hoc approaches. However, these approaches
do not provide a systematic solution for systems with different
heterogeneity characteristics and an arbitrary number of PUs.

Apart from performance, memory contention also has a con-
siderable impact on chip-level power consumption. Several stud-
ies [1, 6, 8, 13, 17, 20, 28] focused on iSMHS energy characteristics
and relied on greedy algorithms or machine learning-based ap-
proaches to control the power consumption via dynamic voltage
and frequency scaling (DVFS) and thermal design power (TDP)
based power caps. However, the impact of contention on energy
usage of PU and the chip is not addressed, and these studies do not
build an analytical approach that establishes a direct relationship
between energy and memory contention.

The ubiquitous deployment of iSMHS in environments in which
the use-case priorities can dramatically vary makes the kernel collo-
cation problem more challenging. Since the objectives are dynamic
and constrained by the throughput and power budget needs, meet-
ing them is crucial for optimizing overall utilization of iSMHS. For
example, in an autonomous driving scenario, the system software
should collocate kernels in the most performance-maximized man-
ner when approaching an intersection with multiple objects to
track. On the other hand, while cruising on a highway at a stable
speed for which processing throughput needs are lower, kernels
can be scheduled to minimize total energy usage. Ideally, such an
objective-aware kernel collocation could be achieved with a simple
parameter that controls the energy-performance trade-off (EPTO).

This paper presents MEPHESTO, which proposes a holistic ap-
proach for controlling the EPTO in the collocated kernel execution
on iSMHS. A per-PU kernel operational intensity [12, 33] was used
to approximate the effects of contention on performance and energy
along with the kernel collocation algorithm to intelligently find
near-optimal collocation that satisfies the provided EPTO objective.
The authors believe that this is the first effort to propose a generic
formulation for memory contention in iSMHS that considers factors
that directly correlate to energy and performance during kernel
collocation.

The paper makes the following contributions:

• Integrated performance and energy behavior representation are
introduced based on time factors and power factors, which are
nonlinear functions of the ratios between standalone and collo-
cated execution measurements of a PU in a given iSMHS.
• A novel empirical model was built to estimate the energy and
performance of a set of collocated kernels on an arbitrary num-
ber of PUs while considering the variation caused by memory
contention.

Figure 1: A logical representation of iSMHS with CPU and
GPU and kernel queues for O&P: 123|45.

• A collocation algorithm was designed that takes the target EPTO
as a user-defined input parameter and employs a novel heuristic
to reach a near-optimal ordering and placement (O&P) of a given
set of kernels on a target set of PUs.
• The feasibility of MEPHESTO was empirically evaluated by col-
locating a collection of scientific kernels across three heteroge-
neous PUs of NVIDIA’s Tegra Xavier platform: CPU, GPU, and
programmable vision accelerator (PVA). The proposed schedul-
ing algorithm was demonstrated to be able to find near-optimal
O&P with a reasonable (on an average 10%) modeling error rate.
It also provides up to 30% improvement over a greedy approach.

2 UNDERSTANDING THE EFFECTS OF
COLLOCATED EXECUTION ON ISMHS

This section explores the energy and performance implications of
collocated kernel execution on an iSMHS similar to that portrayed
in Fig. 1. In this example, the CPU and GPU are connected to a
shared memory, and the GPU does not have a private memory.
There could also be other heterogeneous PUs, such as PVAs and
deep learning accelerators (DLAs), connected to the same memory
subsystem; however, they are excluded in this specific case for
simplicity. In this system, the collocation of five ready-to-execute
kernels with the O&P configuration of 123 |45, in which kernels 1, 2,
and 3 will be orderly executed on the GPU and kernels 4 and 5 will
be placed for CPU execution. Kernels placed on different queues
could execute in a collocated manner and result in contention on
the memory bus.

2.1 Contention vs. Energy and Performance
To observe the effects of the collocated execution of two maximum
memory BW-demanding kernels on performance and energy, the
authors ran the STREAM benchmark [21] on the ARM Carmel
CPU and Volta GPU of NVIDIA’s Xavier platform concurrently.
The amount of data that the CPU and GPU were able to process
during execution was recorded, and the total execution time and
power consumed by the CPU and GPU were measured at 50 ms
intervals. The runs are repeated for the same amount of data in
standalone mode, and the execution time, total energy consumption,
and average power consumption are reported in Fig. 2a. Signifi-
cant increases in execution time and energy consumption were
observed for both kernels while running simultaneously on the
CPU and GPU. On the other hand, average power consumption
decreased for collocation, particularly from the GPU perspective.
Although the authors ensured that CPU and GPU utilization was

(a) Effect of memory contention on time, energy,
and power for collocated/standalone execution
of the STREAM benchmark on CPU and GPU.

(b) Per-flop energy consumption when kernels with
different operational intensities are run in a stan-
dalone mode.

(c) Per-flop execution time when kernels with differ-
ent operational intensities are run in a standalone
mode.

Figure 2: Energy and performance behavior under different scenarios.

100% all the time and that the system did not throttle CPU, GPU, or
memory frequencies, the BW utilization dropped to almost half of
the standalone value during collocated execution. This observation
resulted in the realization that the impact of contention on time
and energy is different for CPUs and GPUs and further motivated
the establishment of a PU-centric contention model for energy and
performance (i.e., execution time).

2.2 Need for Characterizing Kernels and PUs
Since contention depends on the amount of memory access requests
generated by the kernel, the kernels running on each PU must be
characterized in terms of their memory access requests to identify
the level of contention they might incur. Also, contention only oc-
curs when the processor cannot find the requested data in the cache
and data must be brought from the system memory. For this reason,
this work identified kernels based on their frequency of system
memory accesses by using an operational intensity metric, which
is the ratio of the total number of flops and total bytes read/write
(R/W) between last-level cache (LLC) and system memory, as de-
fined by the Roofline model [33]. The lesser the operational inten-
sity, the more likely it is to have contention. Moreover, contention
also depends on the physical BW of the system and the amount of
cache attached to the processors. For this reason, PU behavior must
also be characterized by cross-running different kernels with differ-
ent operational intensities in both PUs simultaneously to observe
the level of contention.
2.2.1 Justification for Using Operational Intensity. Operational in-
tensity depends on traffic between LLC and memory, which rep-
resents the common contention point for different PUs in iSMHS.
Other factors affect the performance of collocation, such as the
memory access patterns of the kernels and caching optimizations,

but operational intensity can indirectly include those effects since
traffic between LLC and memory reflects those effects. In this way,
operational intensity provides a simplified and unified metric that
presents a fair trade-off between modeling complexity and predic-
tion accuracy.

2.3 Ordering and Placement
Figure 2a shows that collocating kernels can significantly impact
energy and performance. As a result, kernel ordering is important
for energy and performance. The example given in Fig. 1 implies
that kernel 1 will be collocated with kernel 4 and that kernel 2 will
be collocated with kernel 5. This work strives to determine the best
O&P for a given set of kernels. One systematic way to approach
this problem is to start by running synthetic kernels standalone on
the CPU and GPU with different operational intensities to observe
how much time and energy is spent for each flop. The Empirical
Roofline Toolkit [19] was modified to produce various intensities,
and the energy and performance behaviors are shown in Figs. 2b
and 2c, respectively. The results show that with greater operational
intensity, the CPU becomes more favorable than the GPU since it
spends less energy and time per flop.

Another observation at the intersection point of the CPU and
GPU curve is that if the operational intensity that identifies a spe-
cific kernel falls to the left of the intersection, it is more suited
for GPU, and vice versa. Thus, if the operational intensity of a
kernel being run is known, an accurate placement decision can be
made as to where the kernel should run. However, the intersection
points might be different for energy and performance behavior,
making the placement decision more complicated. More impor-
tantly, Figs. 2b and 2c do not consider collocation or contention.
Therefore, a combined solution is needed that will incorporate the

Table 1: Roofline kernels used to understand the outcomes of different O&P variations.

Kernel Flop per DRAM R/W byte Operational Total GPU (standalone) CPU (standalone)
name array index per array index intensity flop Flop/s Avg. power (Watt) Flop/s Avg. power (Watt)

1 1 16 0.0625 273.8 G 7.2 G 6.9 6.2 G 13.3
2 6 16 0.375 273.8 G 40.3 G 7.3 36.9 G 12.8
3 12 16 0.75 273.8 G 41. 9G 7.0 72.6 G 12.4
4 20 16 1.25 273.8 G 42.7 G 6.8 99.8 G 12.1
5 48 16 3.0 273.8 G 43.3 G 6.5 115.9 G 10.3

outcomes of Figs. 2a, 2b, and 2c together. The confluence of O&P
for a given set of kernels must be considered.

2.4 Kernel Collocation for Varying Energy and
Performance

To demonstrate how various O&P configurations affect energy
consumption and performance differently, the Empirical Roofline
Toolkit was used to generate five kernels, whose details are given
in Table 1, with varying operational intensity ratios. These kernels
operate in a read-compute-write fashion. The first 8 bytes of data
(i.e., double-precision floating point) are read from an array, a series
of additions and multiplications is performed, and the data are
written back to the same memory location. In this way, data are
ensured to be fully read from and written back to the DRAM. The
second and third columns of Table 1 show the number of floating-
point operations and the total amount of bytes R/W from DRAM
for every array index the kernels process, respectively. Based on
these values, the operational intensities per kernel were calculated.
Through profiling, flops per second and the average power data for
each kernel in the standalone mode were generated for CPU and
GPU.

Figure 3: Different total energy and performance behaviors
for various collocation combinations for the same kernels.

Four different O&P configurations were used, and the execution
time and energy consumption are shown in Fig. 3. The results show
that different O&P configurations lead to different time/energy
profiles. Although the common strategy in the related literature
is to collocate compute-intensive kernels with memory-intensive
kernels to improve overall performance, the optimal O&P strategy
might vary when a trade-off is being sought between energy and
performance. This situation raises a few questions: How can the
cut-off point for the compute-memory intensity be defined? What
happens if the number of memory-intensive kernels is more than
the compute-intensive kernels, or vice versa? How can trade-off
control be established between energy and performance? As shown
in the following sections, greedy algorithms commonly employed
by the related studies are not sufficient to address all these consid-
erations.

This research revolves around addressing the four motivations
presented in this section. The remainder of the paper presents an
empirical model for defining memory contention by considering
the kernel and processors, defines optimal O&P, and presents the
kernel collocation algorithm for obtaining a desired EPTO.

3 AN EMPIRICAL MODEL FOR MEMORY
CONTENTION

This section presents a core component ofMEPHESTO, an empirical
model that characterizes kernels and PUs with respect to memory
contention. The impact of memory contention is defined in terms
of energy consumption and performance (i.e., execution time). For
a given O&P of kernels, this model predicts the execution time and
energy consumption.

Table 2: The notations used by the model.

Notation Explanation
𝐾𝑖 𝑖th kernel from 𝑛 kernels 𝐾 = {𝐾1, 𝐾2, ..., 𝐾𝑛}
𝑃 𝑗 𝑗th PU from𝑚 PUs 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑚}
𝐹𝐾𝑖 Number of flops in kernel 𝐾𝑖
𝑇
𝐾𝑖
𝑃 𝑗

Standalone execution time of 𝐾𝑖 on PU 𝑃 𝑗
𝑃𝑤

𝐾𝑖
𝑃 𝑗

Standalone power of PU 𝑃 𝑗 for 𝐾𝑖
𝑂𝐼𝑃 𝑗 Operational intensity of the kernel on 𝑃 𝑗
𝑇𝐹𝑃 𝑗 Time factor of 𝑃 𝑗
𝑃𝐹𝑃 𝑗 Power factor of 𝑃 𝑗
𝑇𝐶

𝐾𝑖
𝑃 𝑗

Collocated execution time of 𝐾𝑖 on PU 𝑃 𝑗
𝐸
𝐾𝑖
𝑃 𝑗

Energy consumption of 𝐾𝑖 on PU 𝑃 𝑗
𝐶 Total number of possible O&P
𝜌 PU wise queues (i.e., O&P)
𝜏𝑐 Execution time of current O&P
𝜀𝑐 Energy consumption of current O&P
𝑆 (𝑉) Resultant kernel collocation of 𝑉 kernels
𝜔 Weight for a given O&P

3.1 Definitions
All symbols and terms used in this model are introduced in this
section and are also presented in Table 2. An O&P is a set of n
kernels 𝐾 = {𝐾1, 𝐾2, ..., 𝐾𝑛} in which a kernel is an uninterrupted
computation that is ready to be executed on any of the available
PUs in the system. The kernel collocator finds the placement of
every 𝐾𝑖 on a set of m heterogeneous PUs, which is represented by
𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑚}.

𝐾𝑖 = [𝐹𝐾𝑖 ,𝑂𝐼𝐾𝑖 ,∀𝑃 𝑗𝜖𝑃 {𝑇
𝐾𝑖
𝑃 𝑗
, 𝑃𝑤

𝐾𝑖
𝑃 𝑗
}] . (1)

A kernel 𝐾𝑖 is represented by using three terms, as shown in
Eq. (1). The first term, 𝐹𝐾𝑖 , is the number of floating point operations
of that kernel. The second term, 𝑂𝐼𝐾𝑖 , is the operational intensity.
When a kernel, 𝐾𝑖 , is placed on a processor, 𝑃 𝑗 , the standalone
execution time and average power consumption are represented by
𝑇
𝐾𝑖
𝑃 𝑗

and 𝑃𝑤𝐾𝑖
𝑃 𝑗
, respectively. So, the third term represents the pair

of standalone execution time and average power consumption for
each PU. The objective is to determine these values at compile time
and also by partially profiling the kernels at run time. However,
when collocated, each 𝐾𝑖 exhibits different slowdown in execution
time and consumes different average power based on their compute
and memory intensity. As suggested previously, in Fig. 2, there is a
factor for execution time,𝑇𝐹𝑃 𝑗 , and a factor for average power, 𝑃𝐹𝑃 𝑗 ,
for a given PU 𝑃 𝑗 . These factors are the ratio of their collocated to
standalone values. Thus, PU is represented as 𝑃 𝑗 = [𝑇𝐹𝑃 𝑗 , 𝑃𝐹𝑃 𝑗].

(a) GPU time factor. (b) GPU power factor. (c) GPU energy factor.

(d) CPU time factor. (e) CPU power factor. (f) CPU energy factor.

Figure 4: Collocation factors: collocated/standalone values of time, power, and energy for different operational intensities.

3.2 Characterization of Memory Contention
To define and characterize memory contention, three factors must
be determined: (1) how kernels,𝐾 , are characterized; (2) how PUs, 𝑃 ,
are characterized, and (3) how time factor, 𝑇𝐹𝑃 𝑗 , and power factor,
𝑃𝐹𝑃 𝑗 , are formulated. To determine the first factor, operational
intensity must be considered as a measure to characterize a kernel’s
compute or memory intensity. The Empirical Roofline Toolkit [19,
33] was modified to generate kernels with different operational
intensities, and their execution was observed. Roofline kernels are
designed in a read-compute-write fashion. For this reason, a fixed
number of bytes are exchanged between the cache and system
memory; as a result, the operational intensities of those kernels
do not vary across different PUs with different cache hierarchy. To
determine the second factor, a range of kernels was collocated with
different operational intensities in PUs of iSMHS. A kernel was kept
running in one processor, and the impact on another was observed.
While doing this, execution time and power consumption were
recorded. From these values, energy consumption was calculated.
To capture the impact in a structured way, a ratio of collocated to
standalone time and power was made, which are termed time factor
and power factor, respectively. This addresses the third concern.

This PU characterization is a one-time effort for any new system.
In this case, the authors were interested in NVIDIA Xavier’s CPU
and GPU. Figure 4 plots the results. In these heat maps, the x-
axis is the operational intensity of kernels that are running on the
CPU, and the y-axis is for the GPU. Time and power are captured
for both the CPU and GPU, from which energy consumption was
calculated. When operational intensity is low (i.e., high memory
intensity), the impact of contention is visible in both the CPU and
GPU. The time factor goes up to 2.2𝑥 for the GPU (Fig. 4a) and 1.8𝑥
for the CPUwhen contention is present (Fig. 4d). Similar behavior is
observed for energy consumption (Fig. 4c). The opposite is observed
for the power factor; 0.6𝑥 is observed for the GPU (Fig. 4b), and
0.8𝑥 is observed for the CPU (Fig. 4b). Interestingly, after a certain
operational intensity occurs, the impact of contention vanishes
because the available system BW is enough for the request, and
there is no bus contention.

After capturing the impact of different kernels, the time factor,
𝑇𝐹𝑃 𝑗 , and power factor, 𝑃𝐹𝑃 𝑗 , can be represented as a function of
the operational intensity of the kernel of the current PU, 𝑂𝐼𝑃 𝑗 , and
collocated PU,𝑂𝐼𝑃𝑐𝑜𝑙 , as in Eq. (2). A fifth order multivariate polyno-
mial regression curve was generated by using the CxxPolyFit [16]
tool that supports up to the ninth order for𝑇𝐹𝑃 𝑗 , and 𝑃𝐹𝑃 𝑗 , in which

the independent variables are 𝑂𝐼𝑃 𝑗 and 𝑂𝐼𝑃𝑐𝑜𝑙 . Using a lower order
provides faster evaluation with low accuracy, whereas higher order
(e.g., fifth order or higher) provides more accuracy but takes more
time to evaluate. Fifth order was used due to a reasonable balance
between the evaluation time and accuracy, as recommended by
CxxPolyFit [16].

𝑇𝐹𝑃 𝑗𝑜𝑟𝑃𝐹𝑃 𝑗 = 𝑓 (𝑂𝐼𝑃 𝑗 ,𝑂𝐼𝑃𝑐𝑜𝑙) . (2)

3.3 Collocation Estimator Algorithm
The objective of the collocation estimator algorithm is to take an
O&P of variable length kernels and predict the execution time and
energy consumption while considering memory contention. To
calculate the total execution time, 𝜏𝑐 , for the current O&P, 𝑐 , the
collocated execution time must be estimated from time factor and
standalone execution time. For the total energy consumption, 𝜀𝑐 ,
collocated average power must be estimated from collocated power
factor and standalone average power. Moreover, the length (i.e., the
time span of execution) of a kernel must be considered since one
kernel can be collocated with multiple shorter kernels during its
lifetime.

The collocation estimator algorithm given in Algorithm 1 was
designed by considering the aforementioned objectives. This algo-
rithm takes an O&P of kernels, 𝑐 , scheduled on PUs, 𝑃 . Every PU
has its own queue 𝜌 = {𝜌1, 𝜌2, ..., 𝜌𝑚} in which kernels are stored
in such an order so that the kernel in the head of the queue will be
scheduled first to the corresponding PU. The algorithm determines
the overall execution time, 𝜏𝑐 , and total energy, 𝜀𝑐 , incrementally.
In the beginning, at [Line 3], 𝜏𝑐 , and 𝜀𝑐 are initialized. Then, at
[Line 4], a loop is started, which continues until all queues are
empty or all kernels are scheduled. In [Lines 5–7], the queue item
at the head is popped from each 𝜌 𝑗 and stored as 𝐾𝑃 𝑗 . At [Lines
9–10], the time factor, 𝑇𝐹𝑃 𝑗 , and power factor, 𝑃𝐹𝑃 𝑗 , are calculated
by using Eq. (2) for all nonempty 𝐾𝑃 𝑗 . Collocated time, 𝑇𝐶𝑃 𝑗 , is
then calculated by multiplying the standalone execution time and
collocation time factor at [Line 11]. At [Line 13], the processor
Algorithm 1 Collocation Estimator
1: Input: PU wise kernel queue 𝜌 = {𝜌1, 𝜌2 ...𝜌𝑚 }
2: Output: Execution time, 𝜏𝑐 , and energy consumption, 𝜀𝑐
3: Initialize: 𝜏𝑐 ← 0&𝜀𝑐 ← 0
4: while ∃𝜌 𝑗𝜖𝜌𝑆𝑖𝑧𝑒 (𝜌 𝑗) > 0 do
5: for each 𝜌 𝑗𝜖𝜌 where 𝑆𝑖𝑧𝑒 (𝜌 𝑗) > 0 do
6: 𝐾𝑃 𝑗 = 𝜌 𝑗 .𝑃𝑂𝑃 ()
7: end for
8: for each 𝐾𝑃 𝑗 ≠ 𝑁𝑈𝐿𝐿 do
9: 𝑇𝐹𝑃 𝑗 = 𝑡𝑖𝑚𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑂𝐼𝑃 𝑗 ,𝑂𝐼𝑃𝑐𝑜𝑙)
10: 𝑃𝐹𝑃 𝑗 = 𝑝𝑜𝑤𝑒𝑟_𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑂𝐼𝑃 𝑗 ,𝑂𝐼𝑃𝑐𝑜𝑙)
11: 𝑇𝐶𝑃 𝑗 = 𝑇

𝐾𝑖
𝑃 𝑗
∗𝑇𝐹𝑃 𝑗

12: end for
13: 𝑃𝑚𝑖𝑛 = min∀𝑃 𝑗 [𝑇𝐶𝑃 𝑗]
14: 𝜏𝑐 +=𝑇𝐶𝑃𝑚𝑖𝑛
15: 𝜀𝑐 += Σ∀𝑃 𝑗 [𝑃𝑤

𝐾𝑖
𝑃 𝑗
∗ 𝑃𝐹𝑃 𝑗 ∗𝑇𝐶𝑃𝑚𝑖𝑛]

16: for each𝑇𝐶𝑃 𝑗 > 𝑇𝐶𝑚𝑖𝑛 do
17: 𝑇𝐶𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑃 𝑗 = [𝑇𝐶𝑃 𝑗 −𝑇𝐶𝑚𝑖𝑛]/𝑇𝐹𝑃 𝑗
18: 𝜌 𝑗 .𝑃𝑈𝑆𝐻 (𝑇𝐶𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑃 𝑗)
19: end for
20: end while

with the smallest kernel, 𝑃𝑚𝑖𝑛 , is determined, and at [Line 14], the
minimum time is added to the total time, 𝜏𝑐 . The minimum execu-
tion time was taken because the other kernels in other processors
will now have a different kernel as collocated since the minimum
one has finished its execution. At [Line 15], energy is calculated
by considering the minimum time and collocated average power.
Collocated average power is determined by multiplying standalone
average power, 𝑃𝑤𝐾𝑖

𝑃 𝑗
, with the power factor, 𝑃𝐹𝑃 𝑗 . Since one kernel

has finished its execution, the remaining part of the longer kernels
must be calculated. For this reason, at [Lines 16–18], the remaining
part of collocated time, 𝑇𝐶𝑃 𝑗 , is factored back to standalone time,
𝑇𝐶𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑃 𝑗 , and pushed to the corresponding queue, 𝜌 𝑗 . These
leftover kernels are considered to be just like a new kernel in the
next iterations, and this occurs until every queue is empty. The
total execution time, 𝜏𝑐 , and energy, 𝜀𝑐 , are determined when every
queue is empty. Algorithm 1 finds 𝜏𝑐 and 𝜀𝑐 in O(nm) time, where
n is the number kernels, and m is the number of processors.

4 DEFINING OPTIMAL ORDERING AND
PLACEMENT

This section discusses the cost function design to define an op-
timal O&P based on a given trade-off target. For this reason, all
possible combinations of O&P must be considered for all kernels,
𝐾 = {𝐾1, 𝐾2, ..., 𝐾𝑛} in all PUs, 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑚}. Let C represent
all the possible ways that n kernels can be ordered and placed on
m processors. The execution time of all possible O&P is denoted
as 𝜏 = {𝜏1, 𝜏2, ..., 𝜏𝑐 }, and energy is denoted as 𝜀 = {𝜀1, 𝜀2, ..., 𝜀𝑐 },
where minimum and maximum execution times are represented
by 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 , respectively. The minimum and the maximum
energy consumption for all O&P are represented by 𝜀𝑚𝑖𝑛 and 𝜀𝑚𝑎𝑥 .
For example, for five jobs in two processors, there are 482 possible
O&P and thus 482 pairs of energy and time. Since there are two
parameters—energy and performance—a reference point is needed
to define the optimal O&P. This reference point is called the EPTO
parameter.

The EPTO parameter is represented as a pair of energy perfor-
mance in the following format—(performance, energy)—where the
value of performance or energy can be 0–100. If EPTO is set to
(0,100), then minimizing execution time is given the highest prior-
ity. If EPTO is set to (100,0), then minimizing energy consumption
is given the highest priority. If EPTO is set to (30,70), then 70%
priority is given to minimize execution time and 30% priority is
given to minimize energy consumption.

To achieve this functionality, energy and time pairs of every
O&P were converted to a range from 0 to 100. Then, every O&P
becomes a point at which energy and time can vary from 0 to 100,
where 0 represents the minimum time or energy and 100 represents
the maximum. In this way, the energy-time pair of all O&P can be
plotted in a 100 × 100 plot in which EPTO also becomes another
point. Then, the distance from EPTO to every O&P is measured.
The lower the distance, the higher the weight assigned, and at the
end, the O&P with the highest weight is selected. This is achieved
by a cost function expressed in Eq. (3). Based on the value of EPTO,
𝜏𝑐 , and 𝜀𝑐 , the weight of every O&P is calculated. A set of C weight
is expressed as𝜔 = {𝜔1, 𝜔2, ..., 𝜔𝑐 }. The O&P of kernels, 𝑆 (𝐽), were

selected where the weight is the highest, and this is the optimal
O&P for the kernels and defined EPTO.

𝜔𝑐 = 1/𝑑𝑖𝑠𝑡
[{

𝜏𝑐 − 𝜏𝑚𝑖𝑛
𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛

∗ 100, 𝜀𝑐 − 𝜀𝑚𝑖𝑛
𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛

∗ 100
}
, {𝐸𝑃𝑇𝑂}

]
.

(3)

5 KERNEL COLLOCATION STRATEGY
This section formulates a heuristics based on dynamic programming
(DP) for MEPHESTO. By using the DP-based heuristics, a kernel
collocation algorithm is designed, followed by a discussion of the
complexity analysis of the approach.

5.1 Dynamic Programming Formulation
An exhaustive search throughout all the kernel O&Ps guarantees an
optimal solution but is computationally expensive. For this reason,
a DP approach was formulated to reach a near-optimal solution
and reduce the complexity [2]. The solution is built from a smaller
set and recursively builds the bigger ones by selecting maximum
weighted subsolutions. At each step, a new placement for one kernel,
𝐾𝑗 , is found, which maximizes the weight for the current O&P. V
is considered a varying set of kernels, where 𝑉 ⊆ 𝐾 . Kernel O&P
is represented as S(V), which provides the processor wise queue
information 𝜌 = {𝜌1, 𝜌2, ..., 𝜌𝑚}. In Eq. (4), S(V) is built recursively.

𝑆 ({𝐾1, 𝐾2 }) = 𝑀𝑎𝑥 [𝐶𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑒 ({∅}, {𝐾1, 𝐾2 }, 𝜌 𝑗)],

if |𝑉 | = 2
𝑆 (𝑉) = 𝑀𝑎𝑥 [𝐶𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑆 (𝑉 − {𝐾𝑖 }), {𝐾𝑖 }, 𝜌 𝑗)],

if |𝑉 | > 2
(4)

Here, the function 𝐶𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑆 (𝑉), 𝐾𝑖 , 𝜌 𝑗) represents the collo-
cation estimator algorithm given at Algorithm 1. As the collocation
estimator algorithm takes a specific O&P as an input, the param-
eters constitute the processor wise queue 𝜌 (i.e., the O&P). The
parameters are given as follows:

𝑆 (𝑉) is the current O&P.
𝐾𝑖 is a new kernel that will be added to 𝑆 (𝑉).
𝜌 𝑗 is the processor queue into which 𝐾𝑖 will be added.

The 𝐶𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑒 function provides the execution time and energy
consumption for that O&P. The 𝑀𝐴𝑋 operation then considers
the placement of 𝐾𝑖 in all processors, P, and selects the placement
where the weight is the maximum based on the cost function and
EPTO. The base case of Eq. (4) determines the placement with
maximumweight for two kernels since it takes (at least) two kernels
to collocate. For example, there are four O&Ps in a scenario with
two kernels and two PUs. The base case determines the best O&P
from these four O&Ps by using the cost function. For a scenario
with three kernels and two PUs, the second case of Eq. (4) is used.
In this case, one kernel is separated and placed in all the PUs along
with the best O&P of the remaining two kernels, which are derived
from the base case. Again, the cost function and EPTO are applied
to determine the best O&P of the three kernels. In this way, the total
set gets bigger by applying the cost function while DP eliminates
unnecessary combinations.

Algorithm 2 DP-Based Kernel Collocation
1: Input: 𝑛 Kernels, 𝐾 = {𝐾1, 𝐾2, ..., 𝐾𝑛 },

𝑚 Processors, 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑚 }, and EPTO
2: Output: O&P with MAX weight, 𝑆 (𝑉) .
3: for 𝑖 = 2 to 𝑛 do
4: if 𝑖 == 2 then
5: Calculate all possible base cases.
6: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

7: end if
8: for each𝑉 ∈ 𝐾 where |𝑉 | = 𝑖 do
9: 𝑆 (𝑉) ← {∅}
10: for each 𝐾𝑖 ∈ 𝑉 do
11: 𝑀𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 ← 0
12: 𝑉 _𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =𝑉 − {𝐾𝑖 }
13: for each 𝑃 𝑗 ∈ 𝑃 do
14: 𝑆 (𝑉𝑃 𝑗) = 𝐶𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑆 (𝑉 _𝑝𝑎𝑟𝑡𝑖𝑎𝑙), {𝐾𝑖 }, 𝜌 𝑗)]
15: Get time 𝜏𝑐 and energy 𝜀𝑐
16: Update 𝜏𝑚𝑎𝑥 , 𝜏𝑚𝑖𝑛 , 𝜀𝑚𝑎𝑥 , 𝜀𝑚𝑖𝑛
17: end for
18: for each 𝑃 𝑗 ∈ 𝑃 do
19: 𝜔 (𝑉𝑃 𝑗) =𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 (𝜏𝑐 , 𝜀𝑐 , 𝐸𝑃𝑇𝑂)
20: if 𝜔 (𝑉𝑃 𝑗) > 𝑀𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 then
21: Set𝑀𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 = 𝜔 (𝑉𝑃 𝑗)
22: Update 𝑆 (𝑉) = 𝑆 (𝑉𝑃 𝑗)
23: end if
24: end for
25: end for
26: end for
27: end for

5.2 DP-Based Kernel Collocation Algorithm
The objective of the DP-based kernel collocation algorithm is to de-
termine a near-optimal O&P based on a defined EPTO. Algorithm 2
provides a simplistic pseudo-code that implements Eq. (4). This
algorithm takes three inputs: (1) list of kernels, (2) list of PUs, and
(3) EPTO. The output of the algorithm is the near-optimal O&P,
which is denoted as 𝑆 (𝑉). This starts with finding the O&P for
minimal subset V (i.e., the base case where |𝑉 | = 2) by finding the
maximum weight based on EPTO and the cost function. The algo-
rithm then increases the size of V by one new kernel while reusing
the saved maximum weighted (i.e., best) O&Ps from past iterations.
The algorithm finds the best O&P, which is processor wise queues,
𝜌𝑚𝑎𝑥𝑤𝑒𝑖𝑔ℎ𝑡 = {𝜌1, 𝜌2, ..., 𝜌𝑚}. At [Lines 1–2], input and output are
defined. At [Line 3], the algorithm iterates through the smallest
(|𝑉 | = 2) to the largest subset size |𝑉 | = 𝑛. In [Lines 4–7], the base
case of Eq. (4) is calculated by considering two kernels and𝑚 PUs.
In [Line 8], the algorithm iterates over every possible subset 𝑉 of
𝐾 , where |𝑉 | = 𝑖 . [Line 9] initializes 𝑆 (𝑉). In [Line 10], every 𝐾𝑖 is
considered from the current set𝑉 . In [Line 12], 𝐾𝑖 is separated, and
a partial set 𝑉 _𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is formed. The best O&P for this partial set
is already calculated in the previous iteration. At [Line 13], every
processor, 𝑃 𝑗 , is considered for a potential placement for kernel 𝐾𝑖 .
At [Line 14], 𝐾𝑖 is added to the O&P of 𝑆 (𝑉 _𝑝𝑎𝑟𝑡𝑖𝑎𝑙), Collocation
Estimator algorithm (i.e., Algorithm 1) is called, and the result is
stored at 𝑆 (𝑉𝑃 𝑗). In [Line 15], execution time, 𝜏𝑐 , and energy con-
sumption, 𝜀𝑐 , are updated, which are the output of Algorithm 1. In
[Line 16], 𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 , 𝜀𝑚𝑖𝑛 , and 𝜀𝑚𝑎𝑥 are updated. In this way, time
and energy are calculated for all the possible subsets that are built
on top of the best O&P of previous iterations. Now, there is a set

of execution time and energy consumption. At [Line 19], the cost
function in Eq. (3) is invoked by using the𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 () func-
tion that uses energy, time, EPTO, and all the minimum-maximum
values. In [Lines 21–22], the algorithm checks whether the cur-
rent O&P provides maximum weight. If it does,𝑀𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 and
𝑆 (𝑉) are updated. When the algorithm finishes its iterations, 𝑆 (𝑉)
contains the desired near-optimal O&P for the given inputs.

5.3 Complexity
As mentioned previously, Algorithm 1 has a complexity of 𝑂 (𝑛𝑚).
The outer loop of Algorithm 2 at [Line 3] is iterated (𝑛−1) times, and
the selection of subsets 𝑉 with size 𝑖 results in the loop at [Line 8]

and the innermost loop to be iterated
∑𝑛
𝑖=2

(
𝑛

𝑖

)
and

∑𝑛
𝑖=2 𝑖

(
𝑛

𝑖

)
times,

respectively, resulting in a complexity of𝑂 (𝑛22𝑛−1𝑚2). However, a
brute force search over all the combinations will reach a complexity
of 𝑂 (𝑛𝑚2𝑛!). The DP solution is faster but might not always yield
the optimal O&P. The performance of the DP-based strategy is
evaluated in the next section.

6 EXPERIMENTAL SETUP
These experiments were conducted on NVIDIA’s Tegra Xavier SoC
development platform. For parallel kernel execution on the CPU,
the OpenMP programming model was used. All the CPU executions
refer to the multithreaded execution that uses all the available cores.
For GPU and PVA execution, the CUDA and OpenCV programming
models are used, respectively. The Xavier platform gives users the
ability to measure power consumption for the CPU, GPU, and PVA
separately. The tegra_parser tool [24] was used to measure PU-wise
power consumption. To measure the number of flops and memory
R/W bytes from the LLC to the system memory (i.e., operational
intensities) for the kernels, NVIDIA’s proprietary profiling tool
nvprof was used. Since the ARM Carmel CPU of Xavier does not
yet have the required counters to calculate operational intensity,
the values reported by nvprof were used. This approach led to a
reasonable approximation for the CPU execution, which is further
explained in Section 7.2.

For GPU and CPU characterization and execution, scientific ker-
nels from the Rodinia benchmark suite [5] and synthetic kernels
from the Roofline toolkit [33] were used to demonstrate the effec-
tiveness ofMEPHESTO. For PVA, applications from theOpenCV [29]
benchmark suite, which is bundled with NVIDIA’s Vision Program-
ming Interface (VPI) software development kit [25], were used. The
data corresponding to the characteristics of these kernels is pre-
sented in Tables 3 and 4.While experimenting, no power capwas set
in the device. Power caps in Xavier limit the maximum frequency
in PUs and thus change the kernel behavior; DVFS picks frequency
from a defined set of frequency for a power cap. Changing power
caps requires the kernels in the affected PUs to be reprofiled to gen-
erate data for Tables 3 and 4. By using these kernels, the proposed
DP-based scheduling was compared with three other scheduling
approaches: (1) optimal scheduling for a specific EPTO, (2) random
scheduling, and (3) a greedy scheduling approach commonly used
by the related work [37].

Figure 5: Result for benchmark kernels for EPTO (0, 0): near-
optimal O&P selection for all combinations. The red star is
EPTO, the blue triangle is the optimal solution, and the ma-
genta square is the near-optimal solution by DP. The abso-
lute minimum-maximum value pairs for energy and time
are 0.72–3.3 kWatt-seconds and 45.5–255.5 seconds.

7 EXPERIMENTAL RESULTS
This section evaluates the efficacy ofMEPHESTO in six steps: (1) the
model and algorithms are shown to result in a near-optimal solution
in a CPU+GPU collocated execution scenario, (2) the prediction
accuracy of the model is evaluated, (3) different EPTO goals are
evaluated, (4) a comparison with a greedy algorithm is presented, (5)
the experiments are extended to include concurrent execution on
CPU+GPU+PVA, and (6) the overhead associated with MEPHESTO
is discussed.

7.1 Kernel Collocation Using Scientific Kernels
The first experiment was a high-level feasibility study to demon-
strate how the proposed collocation technique can find a near-
optimal solution among hundreds of thousands of possible O&P
combinations. In this experiment, the EPTO goal is set as (0,0),
which indicates that energy and performance should both be opti-
mized. Although this is an unrealistic goal for the targeted platforms,
this experiment is used to argue why the EPTO should be treated
as a trade-off knob rather than an “optimize-all" target between
energy and performance with more realistic goals such as (100,0),
(0,100), and (50,50).

The proposed algorithm was evaluated by using the eight bench-
mark kernels listed in Table 3. The LLC-to-DRAM R/W bytes and
the number of flops reported in the table are generated by using
the counters provided by NVIDIA. The execution time and average
power data for each kernel are collected in standalone mode for
the CPU and GPU. There are 282, 241 possible ways in which eight
kernels can be collocated (i.e., 282, 241 O&Ps on two PUs). To apply
the EPTO of (0,0), the energy consumption and execution time of
each O&P were normalized to a value between 0 and 100. Then, all
the possible O&Ps were plotted in Fig. 5. The green circles represent
all the possible O&P (random scheduling). The EPTO (0, 0) was
marked with a red star, the optimal solution with a blue triangle,
and the DP-based solution with a magenta square. The optimal
O&P and the near-optimal solution found by the algorithm are
closely located. Hence, the DP-based strategy is capable of selecting
a reasonable near-optimal solution.

A trade-off between the execution time and the energy consump-
tion is necessary when the inverse relationship between them is

Table 3: Benchmark kernels.

Sl. Benchmark Benchmark Total DRAM Total Operational GPU (standalone) CPU (standalone) Favorable
name source R/W byte flop intensity Flop/s Avg. Power Flop/s Avg. Power processor

1 𝑐 𝑓 𝑑 Rodinia 210 G 518 G 2.46 31.0 G 8.3 22.5 G 9.5 Both
2 𝑠𝑟𝑎𝑑1 Rodinia 449 G 441 G 0.88 29.8 G 8.3 87.1 G 9.0 CPU
3 𝑠𝑟𝑎𝑑2 Rodinia 663 G 1.3 T 2.0 77.1 G 7.7 21.8 G 10.6 GPU
4 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓 𝑖𝑛𝑑𝑒𝑟 Rodinia 6 G 33 G 5.2 2.8 G 7.9 2.3 G 17.3 Both
5 𝑠𝑡𝑟𝑒𝑎𝑚 − 𝑡𝑟𝑖𝑎𝑑 Roofline 918 G 115 G 0.125 22.6 G 9.1 19.4 G 15.3 Both
6 ℎ𝑒𝑎𝑟𝑡𝑤𝑎𝑙𝑙 Rodinia 221 G 1.1 T 5.27 113.8 G 15.6 9.3 G 9.4 GPU
7 𝑛𝑤 Rodinia 91 G 12 G 0.14 1.2 G 5.5 2.4 G 12.1 Both
8 𝑙𝑢𝑑 Rodinia 18 G 74 G 3.93 1.3 G 12.1 18.9 G 10.6 CPU

observed. However, in Fig. 5, the inverse relation is absent; hence,
the need for a trade-off seems unnecessary (i.e., there is no need
for EPTO) because some kernels are better suited for one processor.
Running a kernel on the ill-suited processor leads to a nonopti-
mal result (i.e., higher execution time and a higher level of energy
consumption). This explains why there are multiple clusters in
Fig. 5. Section 7.3 further delves into the most close-to-optimal
cluster, which is the leftmost-bottom cluster and shows the effects
of different EPTO values on the success of the proposed scheduling
technique.

(a) Execution time comparison. (b) Energy consumption comparison.
Figure 6: Model accuracy.

7.2 Accuracy of the Empirical Model
The proximity of the O&P generated by the algorithm to the opti-
mal O&P relies on the accurate estimation of collocated execution
times and energy consumption for each kernel produced by the
model. To further evaluate the prediction accuracy of the models,
the authors focused on a subset of five kernels in Table 3. The au-
thors observed how the modeled energy and execution time match
with the actual execution for all the combinations possible with
five kernels, which is 482. Figures 6a and 6b depict the execution
time and energy consumption for all 482 combinations by com-
paring the estimations from the model and the actual execution.
In these figures, the x-axis shows the specific O&P combination.
The model energy consumption and execution time values, which
are denoted by the orange lines, are sorted, resulting in a smooth
curve. The real execution time and energy consumption corre-
sponding to the specific O&P for every data point are denoted by
blue lines. The analysis shows that the model estimate is on par
with the actual values for the execution time and energy consump-
tion. Relative accuracy for an O&P is computed by the formula,

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = [1 −𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (𝑅𝑒𝑎𝑙 −𝑀𝑜𝑑𝑒𝑙)/𝑅𝑒𝑎𝑙]*100, and then av-
eraged for all. The average model accuracy for execution time and
energy consumption is 88.4 and 92%, respectively.

7.3 Experiments with Different EPTO Goals
The experiment presented in Fig. 5 includes many possible O&P
combinations that result in unpractical high-energy consumption
and execution times. To better demonstrate the scale at which
various EPTO goals can be used to achieve the desired trade-off,
the amount of O&P combination space was reduced by identifying
the kernels that are more suitable to run on CPUs or GPUs and
fixing them to the corresponding PU.

A kernel is considered to be more suited for a specific processor
if the ratio of the execution time is at least two times faster while
taking average power into consideration. For example, a kernel has
a 𝐹𝑙𝑜𝑝𝑠/𝑠 value of 𝑡1 and 𝑡2 in PU1 and PU2 and the 𝐴𝑣𝑔.𝑃𝑜𝑤𝑒𝑟
of 𝑝𝑤1 and 𝑝𝑤2 in PU1 and PU2. If 𝑡1/𝑡2 > 2 (at least two times
faster) and 𝑝𝑤1/𝑝𝑤2 < 2, then the kernel is suitable for PU1. In the
same way, the authors determined whether the kernel is suitable for
PU2. If the kernel does not satisfy the condition for any processor,
then the kernel is considered favorable by both processors, and its
placement in all these processors is considered.

Based on the 𝐹𝑙𝑜𝑝𝑠/𝑠 and the 𝐴𝑣𝑔.𝑃𝑜𝑤𝑒𝑟 values reported in
Table 3, the CPU-friendly kernels were identified as 𝑠𝑟𝑎𝑑1 and
𝑙𝑢𝑑 , and the GPU-friendly kernels were identified as 𝑠𝑟𝑎𝑑2 and
ℎ𝑒𝑎𝑟𝑡𝑤𝑎𝑙𝑙 (last column of the table). On the other hand, the 𝑐 𝑓 𝑑 ,
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓 𝑖𝑛𝑑𝑒𝑟 , 𝑠𝑡𝑟𝑒𝑎𝑚 − 𝑡𝑟𝑖𝑎𝑑 , and 𝑛𝑤 kernels can be run on any
processor since no PU always favors their execution.

After the fixed affinities are set, badly performing O&Ps are
eliminated, and the inverse relationship between the execution
time and energy consumption is revealed in Fig. 7a. The circled
diagonal region demonstrates that there is no best solution that
optimizes energy and performance, and there is a clear need for
different EPTO goals. Figures 7b, 7d, and 7c show the optimal O&P
combination (triangle), the near-optimal combination found by the
algorithm (square), and the solution found by a greedy algorithm
(circle) for different EPTO goals (shown by stars) of (0, 100), (50,
50), and (100, 0), respectively. These figures demonstrate that the
DP-based scheduling can select the near-optimal O&P to achieve
the desired trade-off between energy consumption and execution
time.

EPTO provides significant control over kernel collocation deci-
sions. If the user wants to pick an O&P without having a desired

(a) Inversely relation of time and energy. (b) EPTO (0,100).

(c) EPTO (100,0). (d) EPTO (50,50).

Figure 7: Demonstration of the need for EPTO. The red star is EPTO, the blue triangle is the optimal solution,the magenta
square is the near-optimal solution by DP, and the black circle is the greedy solution. The x- and y-axes are normalized. The
absolute minimum-maximum value pairs for energy and execution time are 0.72–1.2 kWatt-seconds and 45.5–77.4 seconds.

trade-off in mind, EPTO (0, 0) can be chosen. EPTO (0, 0) will al-
ways provide an O&P that is close to the diagonal line shown in
Fig. 7a, but no specific trade-off is guaranteed. If the user wants the
fastest execution time or the least energy consumption, EPTO (0,
100) and EPTO (100, 0), respectively, will guarantee that trade-off.
Other EPTOs, such as EPTO (50, 50), also guarantee the desired
trade-off. This strategy provides the run time system with more
control over the device and, if necessary, empowers the run time
system to dynamically choose different EPTO values based on the
device’s energy consumption priority. Moreover, this algorithm
works irrespective of the system power cap, which in turn provides
an extra level of control.

Figure 8: Comparison with greedy scheduling. Blue dots are
EPTO points, and the black circle is the greedy solution.

7.4 Comparison with Greedy Algorithms
The authors believe that a study that consults execution time and
energy consumption to mitigate memory contention has never been
performed. For this reason, the closest work in which the greedy
algorithm is only dependent on the execution time [37] was chosen
for comparison. The greedy algorithm [37] starts by scheduling the
longest GPU-friendly kernel in GPU and selects a CPU-friendly

kernel to collocate. This strategy of collocation excludes lower
operational intensity for reducing memory contention. This is a
classic scenario that stems from the fact that a compute-intensive
kernel should be collocated with a memory-intensive kernel. When
one kernel in one processor finishes its execution, the next PU-
friendly kernel to that processor is chosen. When all PU-friendly
kernels are scheduled, the neutral kernels are chosen.

Following this strategy, an O&P of 3675|2841 is chosen by the
greedy solution for which the numbers represent the kernels from
Table 3. This O&P is compared in Fig. 7d by using a black circle. The
positioning of the black circle reveals that there are many better
solutions available in terms of the energy consumption and the
execution time. Figure 8 presents a better comparison between the
greedy approach and the proposed DP-based algorithm. The blue
points are DP-based solutions for different EPTO points of 0–100,
10–90, 20–80, ..., 100–0, and a trade-off line is also drawn based on
the positioning of different levels of EPTO. The greedy solution is
observed to be significantly far from the trade-off line. The best case
for execution time—EPTO (0, 100)—provides a scheduling in which
execution time is 46.5 seconds for eight kernels, whereas the sched-
uling picked by the greedy solution provides an execution time of
58.3 seconds, which is 11.8 seconds more (i.e., 20% savings by the
DP-based approach). On the other hand, the best case for energy
consumption—EPTO(100, 0)—provides the total energy consump-
tion of 0.75 kWatt-seconds, whereas the greedy solution shows
the energy consumption of 1.1 kWatt-seconds, which translates
to 32% energy savings. Although the DP-based solution is more
computationally expensive than the greedy algorithm, it can save
more execution time. For example, the DP-based solution takes 1.1
seconds to find the scheduling for eight kernels but can save 11.8

(a) EPTO (0,100). (b) EPTO (50,50). (c) EPTO (100,0).

Figure 9: Experiments with three processors: CPU, GPU, and PVA. The red star is the EPTO, the blue triangle is the optimal
solution, and the magenta square is the near-optimal solution picked by DP. The x- and y-axes are normalized. The absolute
minimum-maximum value pairs for energy and execution time are 0.47–0.78 kWatt-seconds and 34.01–58.47 seconds.

Table 4: OpenCV kernels for PVA.

Benchmark Benchmark Total DRAM Total Operational PVA (standalone)
name source R/W byte flop intensity Execution time (sec) Flop/s Avg. Power (Watt)

𝑘𝑙𝑡_𝑡𝑟𝑎𝑐𝑘𝑒𝑟 VPI.0.1 26 G 72 G 2.41 2.41 30.0 G 1.24
𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒_2𝐷 VPI.0.1 7 G 70 G 5.35 5.35 13.2 G 1.39
𝑡𝑖𝑚𝑖𝑛𝑔 VPI.0.1 15 G 122 G 7.87 7.87 15.5 G 1.39

seconds. Moreover, the DP-based approach provides the means to
achieve the desired EPTO.

7.5 Three-PU Scenario: CPU, GPU, and PVA
To demonstrate that MEPHESTO can work for diversely hetero-
geneous systems, the experiments were extended to cover three
different PUs: CPU, GPU, and PVA. In this experiment, a different
subset of eight kernels was used: five top kernels from Table 3 for
execution on CPU and GPU and three OpenCV kernels from the
NVIDIA VPI samples from Table 4 for execution on PVA. Among
the five kernels from Table 3, 𝑠𝑟𝑎𝑑1 is CPU-friendly, 𝑠𝑟𝑎𝑑2 is GPU-
friendly, and remaining three are considered for both CPU and GPU.
For all eight kernels in which one kernel favors CPU, one favors
GPU, and three favor PVA, there are 720 O&Ps. The optimal and
near-optimal O&P selections are plotted in Fig. 9. For two different
EPTO targets—(0, 100) and (100, 0)—the DP-based algorithm was
able to select near-optimal solutions in Figs. 9a and 9c, respectively.
However, EPTO(50, 50) in Fig. 9b shows an interesting case where
optimal and the DP-based solution are far away from each other.
While the distance between the optimal point (denoted by a trian-
gle) and the EPTO point (denoted by a star) is shorter, the DP-based
solution was able to locate a more energy efficient solution. This is
mainly due to the fact that the Euclidean-distance-based method of
finding the optimal reference point (denoted by a triangle) relies
on the absolute distances and ignores whether the optimal point
uses more or less energy/execution-time. However, the DP-based
approach was able to pick a solution from one of the closest clus-
ters from the EPTO point. This experiment demonstrates that the
proposed algorithm can also achieve the desired trade-off for three
PU diversely heterogeneous systems.

7.6 Overhead Analysis of DP-Based Search
The overhead of the proposed DP-based solution in MEPHESTO
for varying numbers of kernels to be ordered and placed is shown

in Fig. 10. For eight kernels, the algorithm finds the near-optimal
solution in 1,061 milliseconds, and this time corresponds to only
1.9% (mentioned in the x-axis) of the total execution time com-
pared with the minimum execution time. On the other hand, since
the overhead increases exponentially, for larger kernel counts and
shorter kernel execution times, the algorithm should be comple-
mented with a windowing technique similar to the one proposed in
Belviranli et al. [2]. Although this technique limits the benefits that
can be obtained from considering all potential O&P possibilities,
it is a simple and effective approach for controlling the increas-
ing overhead. Moreover, the authors foresee that a multithreaded
implementation of their DP-based algorithm will help reduce the
overhead.

Figure 10: Overhead analysis.

8 RELATEDWORK
8.1 Memory Contention Studies
This section reports two studies that are similar to this work. The
first study was done by Zhu et al. [36, 37] in which the authors stud-
ied co-scheduling on an integrated CPU-GPU system and consid-
ered a power cap. They devised a greedy algorithm that addressed

memory contention from degradation in the execution time per-
spective while selecting frequency for power capping. However,
they did not consider the impact of memory contention on power
or energy. Moreover, the greedy algorithm does not provide any
trade-off opportunity. The second study was done by Lee et al. [15]
in which the authors designed a strategy to dynamically predict
the slowdown due to memory contention. However, this study only
considered execution time. Compared with these works, the strat-
egy in this paper defines memory contention from both the energy
and time perspectives while achieving the desired trade-off. Other
works [7, 9, 22] studied memory contention and stalling in hetero-
geneous systems with shared LLC. Pan et al. [26] designed an LLC
management strategy for better performance. Cavicchioli et al. [4]
studied different SoCs and fused CPU-GPU devices to characterize
memory contention. Hill et al. [10] extended the Roofline model for
mobile SoCs to address memory contention from the perspective
of PU BW usage. These studies mainly focused on performance
and did not consider the impact of memory contention on power
or energy consumption.

8.2 Kernel Collocation in CPU-GPU Systems
Kernel collocation in a CPU-GPU environment is also another well-
studied area. Kaleem et al. [13] studied scheduling in integrated
heterogeneous systems in which an online profile was used for load
balancing between CPU and GPU. Panneerselvam et al. [28] de-
vised a task placement strategy in a CPU-GPU system that achieves
application-specific performance goals. Zhu et al. [37] designed a
greedy algorithmwith post-local refinement formemory contention-
aware kernel collocation. Cho et al. [6] devised an on-the-fly strat-
egy to partition irregular workloads in integrated CPU-GPU sys-
tems without considering energy consumption. Zhang et al. [34, 35]
designed a decision tree-based model to determine the impact of
kernel collocation on different applications in integrated CPU-GPU
systems. Pandit et al. [27] designed a dynamic work distribution
that considered the data transfer need of kernels in OpenCL run
time. Liu et al. [18] designed a scheduling policy for tree traversal
algorithms in which CPU and GPU transfer information to make
a decision. Although there are more studies in the literature that
investigated kernel collocation under memory contention, to the
best of the authors’ knowledge, there are no schemes that con-
sider kernel collocation with the intention of addressing energy
and performance simultaneously while considering the effects of
memory contention on both factors. Moreover, almost all exist-
ing work focuses only on CPU/GPU-based systems, whereas this
method works for more diverse heterogeneous systems, such as
SoCs consisting of CPU, GPU, and PVA.

8.3 Energy-Aware Algorithm Studies
Barik et al. [1] introduced a black-box approach for finding energy-
aware scheduling by characterizing applications. Ma et al. [20]
designed GreenGPU, which dynamically throttles the frequency
of GPU and memory. Zhu et al. [37] dynamically finds the appro-
priate frequency for applications to keep the execution under a
power cap. Komoda et al. [14] also studied power capping by using
DVFS to find near-optimal frequency settings for CPU-GPU. Intel
introduced a power capping mechanism RAPL (running average

power limit) in CPUs [30]. Liu et al. [17] designed an energy-aware
kernel mapping strategy in a heterogeneous system in which PUs
are assigned different frequencies by using DVFS. Unlike these
studies, as mentioned previously, the method in this paper con-
siders finding a collocation mapping that can lead to user-defined
energy-performance balance while considering contention.

9 CONCLUSION AND FUTUREWORK
This study presents MEPHESTO, which defines memory contention
in an integrated shared memory heterogeneous system in terms of
energy and performance. MEPHESTO presents an empirical model
to estimate a kernel collocation scenario for multiple kernels and
devises a strategy to reach a desired energy-performance balance.
Based on experiments, this strategy can predict execution time and
energy consumption with an acceptable error rate and find a near-
optimal solution that outperforms a greedy approach. Moreover,
experiments demonstrated the efficacy of MEPHESTO by yielding
near-optimal solutions for more than two processors. The authors
plan to integrate their kernel collocation mechanism into a run
time system.

ACKNOWLEDGMENTS
This research was supported in part by the following sources: De-
fense Advanced Research Projects Agency (DARPA) Microsystems
Technology Office (MTO) Domain-Specific System-on-Chip Pro-
gram, the US Department of Energy (DOE) Advanced Scientific
Computing Research (ASCR) program, and by an appointment to
the Oak Ridge National Laboratory ASTRO Program, sponsored by
DOE and administered by the Oak Ridge Institute for Science and
Education.

This manuscript has been co-authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with
the DOE Public Access Plan.

REFERENCES
[1] Rajkishore Barik, Naila Farooqui, Brian T Lewis, Chunling Hu, and Tatiana

Shpeisman. 2016. A black-box approach to energy-aware scheduling on integrated
CPU-GPU systems. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization. ACM, 70–81.

[2] Mehmet E Belviranli, Farzad Khorasani, Laxmi N Bhuyan, and Rajiv Gupta. 2016.
CuMAS: Data transfer aware multi-application scheduling for shared GPUs. In
Proceedings of the 2016 International Conference on Supercomputing. ACM, 31.

[3] Alexander Branover, Denis Foley, and Maurice Steinman. 2012. Amd fusion apu:
Llano. Ieee Micro 32, 2 (2012), 28–37.

[4] Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. 2017. Memory
interference characterization between CPU cores and integrated GPUs in mixed-
criticality platforms. In 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, 1–10.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium on. Ieee, 44–54.

[6] Younghyun Cho, Florian Negele, Seohong Park, Bernhard Egger, and Thomas R
Gross. 2018. On-the-fly workload partitioning for integrated CPU/GPU architec-
tures.. In PACT. 21–1.

http://energy.gov/downloads/doe-public-access-plan

[7] Marvin Damschen, Frank Mueller, and Jörg Henkel. 2018. Co-Scheduling on
Fused CPU-GPU Architectures With Shared Last Level Caches. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2337–
2347.

[8] Gaurav Dhiman and Tajana Simunic Rosing. 2007. Dynamic voltage frequency
scaling for multi-tasking systems using online learning. In Proceedings of the 2007
international symposium on Low power electronics and design. ACM, 207–212.

[9] Víctor García, Juan Gomez-Luna, Thomas Grass, Alejandro Rico, Eduard Ayguade,
and Antonio J Pena. 2016. Evaluating the effect of last-level cache sharing on
integrated GPU-CPU systems with heterogeneous applications. In 2016 IEEE
International Symposium on Workload Characterization (IISWC). IEEE, 1–10.

[10] MarkHill and Vijay Janapa Reddi. 2019. Gables: A RooflineModel forMobile SoCs.
In 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 317–330.

[11] Y Jiang, X Shen, J Chen, and R Tripathi. 2011. The complexity and approximation
of optimal job co-scheduling on chip multiprocessors. IEEE Transactions on
Parallel and Distributed Systems 22, 7 (2011).

[12] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture. 1–12.

[13] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Chunling Hu, Brian T
Lewis, and Keshav Pingali. 2014. Adaptive heterogeneous scheduling for inte-
grated GPUs. In 2014 23rd International Conference on Parallel Architecture and
Compilation Techniques (PACT). IEEE, 151–162.

[14] Toshiya Komoda, Shingo Hayashi, Takashi Nakada, Shinobu Miwa, and Hiroshi
Nakamura. 2013. Power capping of CPU-GPU heterogeneous systems through
coordinating DVFS and task mapping. In 2013 IEEE 31st International Conference
on Computer Design (ICCD). IEEE, 349–356.

[15] Shin-Ying Lee and Carole-Jean Wu. 2017. Performance characterization, pre-
diction, and optimization for heterogeneous systems with multi-level memory
interference. In 2017 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 43–53.

[16] Leek. 2020. CxxPolyFit: A simple library for producing multidimensional poly-
nomial fits for C++. https://github.com/LLNL/CxxPolyFit

[17] Cong Liu, Jian Li, Wei Huang, Juan Rubio, Evan Speight, and Xiaozhu Lin. 2012.
Power-efficient time-sensitive mapping in heterogeneous systems. In Proceed-
ings of the 21st international conference on Parallel architectures and compilation
techniques. ACM, 23–32.

[18] Jianqiao Liu, Nikhil Hegde, and Milind Kulkarni. 2016. Hybrid CPU-GPU sched-
uling and execution of tree traversals. In Proceedings of the 2016 International
Conference on Supercomputing. ACM, 2.

[19] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J Ligocki, Matthew J
Cordery, Nicholas J Wright, Mary W Hall, and Leonid Oliker. 2014. Roofline
model toolkit: A practical tool for architectural and program analysis. In Interna-
tional Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems. Springer, 129–148.

[20] Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. 2012. Greengpu: A
holistic approach to energy efficiency in gpu-cpu heterogeneous architectures.
In 2012 41st International Conference on Parallel Processing. IEEE, 48–57.

[21] J. D. McCalpin. 2002. Stream Benchmarks.
[22] VineethMekkat, AnupHoley, Pen-Chung Yew, and Antonia Zhai. 2013. Managing

shared last-level cache in a heterogeneous multicore processor. In Proceedings

of the 22nd international conference on Parallel architectures and compilation
techniques. IEEE Press, 225–234.

[23] Sparsh Mittal and Jeffrey S Vetter. 2015. A survey of CPU-GPU heterogeneous
computing techniques. ACM Computing Surveys (CSUR) 47, 4 (2015), 69.

[24] Mohammad Alaul Haque Monil. 2020. Tegra parser: A tool to parse power
consumption for NVIDIA tegra devices. https://github.com/monil01/tegra_
parser/tree/master/c_parser

[25] NVIDIA. 2020. NVIDIA® Vision Programming Interface (VPI). https://docs.
nvidia.com/vpi/index.html

[26] Abhisek Pan and Vijay S Pai. 2015. Runtime-driven shared last-level cache
management for task-parallel programs. In SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–12.

[27] Prasanna Pandit and RGovindarajan. 2014. Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization. ACM,
273.

[28] Sankaralingam Panneerselvam and Michael Swift. 2016. Rinnegan: Efficient re-
source use in heterogeneous architectures. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation. ACM, 373–386.

[29] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. 2012. Real-
time computer vision with OpenCV. Commun. ACM 55, 6 (2012), 61–69.

[30] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and
Doron Rajwan. 2012. Power-management architecture of the intel microarchitec-
ture code-named sandy bridge. Ieee micro 32, 2 (2012), 20–27.

[31] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth, and J. S. Vetter. 2012. The
tradeoffs of fused memory hierarchies in heterogeneous computing architectures.
In Proceedings of the 9th conference on Computing Frontiers. ACM, 103–112. https:
//doi.org/10.1145/2212908.2212924

[32] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf, K. Antypas,
D. Donofrio, T. Humble, C. Schuman, B. Van Essen, S. Yoo, A. Aiken, D. Bernholdt,
S. Byna, K. Cameron, F. Cappello, B. Chapman, A. Chien, M. Hall, R. Hartman-
Baker, Z. Lan, M. Lang, J. Leidel, S. Li, R. Lucas, J. Mellor-Crummey, P. Peltz Jr., T.
Peterka, M. Strout, and J. Wilke. 2018. Extreme Heterogeneity 2018 - Productive
Computational Science in the Era of Extreme Heterogeneity: Report for DOE ASCR
Workshop on Extreme Heterogeneity. Technical Report. USDOE Office of Science
(SC) (United States). https://doi.org/10.2172/1473756

[33] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
insightful visual performance model for floating-point programs and multicore ar-
chitectures. Technical Report. Lawrence Berkeley National Lab.(LBNL), Berkeley,
CA (United States).

[34] Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and Wenguang Chen. 2017.
FinePar: Irregularity-aware fine-grained workload partitioning on integrated ar-
chitectures. In Proceedings of the 2017 International Symposium on Code Generation
and Optimization. IEEE Press, 27–38.

[35] Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wenguang Chen.
2016. Understanding co-running behaviors on integrated CPU/GPU architectures.
IEEE Transactions on Parallel and Distributed Systems 28, 3 (2016), 905–918.

[36] Qi Zhu, Bo Wu, Xipeng Shen, Li Shen, and Zhiying Wang. 2014. Understanding
co-run degradations on integrated heterogeneous processors. In International
Workshop on Languages and Compilers for Parallel Computing. Springer, 82–97.

[37] Qi Zhu, BoWu, Xipeng Shen, Li Shen, and ZhiyingWang. 2017. Co-run scheduling
with power cap on integrated cpu-gpu systems. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 967–977.

https://github.com/LLNL/CxxPolyFit
https://github.com/monil01/tegra_parser/tree/master/c_parser
https://github.com/monil01/tegra_parser/tree/master/c_parser
https://docs.nvidia.com/vpi/index.html
https://docs.nvidia.com/vpi/index.html
https://doi.org/10.1145/2212908.2212924
https://doi.org/10.1145/2212908.2212924
https://doi.org/10.2172/1473756

	Abstract
	1 Introduction
	2 Understanding the Effects of Collocated Execution on iSMHS
	2.1 Contention vs. Energy and Performance
	2.2 Need for Characterizing Kernels and PUs
	2.3 Ordering and Placement
	2.4 Kernel Collocation for Varying Energy and Performance

	3 An Empirical Model for Memory Contention
	3.1 Definitions
	3.2 Characterization of Memory Contention
	3.3 Collocation Estimator Algorithm

	4 Defining Optimal Ordering and Placement
	5 Kernel Collocation Strategy
	5.1 Dynamic Programming Formulation
	5.2 DP-Based Kernel Collocation Algorithm
	5.3 Complexity

	6 Experimental setup
	7 Experimental Results
	7.1 Kernel Collocation Using Scientific Kernels
	7.2 Accuracy of the Empirical Model
	7.3 Experiments with Different EPTO Goals
	7.4 Comparison with Greedy Algorithms
	7.5 Three-PU Scenario: CPU, GPU, and PVA
	7.6 Overhead Analysis of DP-Based Search

	8 Related work
	8.1 Memory Contention Studies
	8.2 Kernel Collocation in CPU-GPU Systems
	8.3 Energy-Aware Algorithm Studies

	9 Conclusion and Future Work
	Acknowledgments
	References

