
WIREFRAME: Supporting Data-dependent Parallelism through
Dependency Graph Execution in GPUs

AmirAli Abdolrashidi
University of California, Riverside

Riverside, CA
amirali.abdolrashidi@email.ucr.edu

Devashree Tripathy
University of California, Riverside

Riverside, CA
dtrip003@ucr.edu

Mehmet Esat Belviranli*
Oak Ridge National Laboratories

Oak Ridge, TN
belviranlime@ornl.gov

Laxmi Narayan Bhuyan
University of California, Riverside

Riverside, CA
bhuyan@cs.ucr.edu

Daniel Wong
University of California, Riverside

Riverside, CA
dwong@ece.ucr.edu

ABSTRACT
GPUs lack fundamental support for data-dependent parallelism
and synchronization. While CUDA Dynamic Parallelism signals
progress in this direction, many limitations and challenges still re-
main. This paper introduces Wireframe, a hardware-software solution
that enables generalized support for data-dependent parallelism and
synchronization. Wireframe enables applications to naturally express
execution dependencies across different thread blocks through a de-
pendency graph abstraction at run-time, which is sent to the GPU
hardware at kernel launch. At run-time, the hardware enforces the de-
pendencies specified in the dependency graph through a dependency-
aware thread block scheduler. Overall, Wireframe is able to improve
total execution time up to 65.20% with an average of 45.07%.

CCS CONCEPTS
• Computer systems organization → Single instruction, multiple
data; Data flow architectures;

KEYWORDS
GPGPU, SIMD, Data Dependency, Thread Block Scheduling, Dataflow

ACM Reference format:
AmirAli Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli, Laxmi
Narayan Bhuyan, and Daniel Wong. 2017. WIREFRAME: Supporting Data-
dependent Parallelism through Dependency Graph Execution in GPUs. In
Proceedings of MICRO-50, Cambridge, MA, USA, October 14–18, 2017,
12 pages.
https://doi.org/10.1145/3123939.3123976

*Work performed during Ph.D. studies at University of California, Riverside

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123976

1 INTRODUCTION
GPUs have played a remarkable role in the evolution of scientific
computing in the last decade. The massive parallelism offered by
thousands of compute cores has led developers to redesign traditional
CPU applications to run on the massively parallel hardware. Despite
the rapid adaptation of GPGPU computing with an enlarging number
of application classes, the GPU hardware has failed to evolve fast
enough to account for the increasing complexity of such applications.

A major deficiency in the modern CUDA programming par-
adigm is a lack of fine-grain support for data-dependent paral-
lelism and synchronization. Typically data dependencies require
algorithms to be redesigned and mapped to intra-SM barriers (us-
ing __syncthreads()) or global barriers via implicit synchroniza-
tion through consecutive kernel launches. This causes difficulty in
programming GPGPUs due to mapping algorithms to these con-
straints, and more importantly, is responsible for significant ineffi-
ciencies in the hardware due to load imbalance and resource under-
utilization [11]. Recent studies [7, 37] have shown that, SMs can
remain under-utilized and unnecessarily idle as the execution reaches
near global barriers, even though there are TBs whose dependencies
are already satisfied.

An intermediate level of inter-block synchronization can ease
programmer burden by granting programmers flexibility to convey
data-dependent synchronization at the thread block (TB) level. Un-
fortunately, existing GPGPU software and hardware assume that
the TBs (in CUDA), or workgroups (in OpenCL), in a given kernel
can be executed in any order, since there is no native support for
synchronization between TBs.

Prior work [19, 36] has shown that it is possible to implement
limited inter-TB synchronization in software via persistent threads
(PT). In this approach, the kernels are redesigned to run with limited
number of TBs, whose total count is equal to the number of SMs.
The threads in different TBs synchronize via global memory-based
software barriers as they iterate through the data indices. However,
the PT approach may cause deadlocks due to potentially unscheduled
TBs and also may increase global memory access contention if the
inter-TB synchronization is frequent.

In a step towards supporting data-dependent parallelism, CUDA
dynamic parallelism (CDP) was introduced to support nested par-
allelism [1]. CDP enables parent kernels to launch child kernels,
and then optionally synchronize on the completion of the latter.

600

https://doi.org/10.1145/3123939.3123976
https://doi.org/10.1145/3123939.3123976

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Abdolrashidi et al.

CDP is mainly limited to certain application patterns with recursive
nested parallelism and time-varying data-dependent nested paral-
lelism, such as loops [34]. Moreover, CDP introduces additional
kernel launch overhead due to in-memory context switching, and
also significant effort is required for programmers to efficiently map
workloads to dynamic parallelism kernels [13].

Prior work have proposed to avoid the overhead of kernel launches
in CDP, by instead launching thread blocks in hardware [28, 33, 34],
supporting nested parallelism for loops through code transforma-
tion [38] or consolidating kernel launch overheads [10, 13]. In the
most recent CUDA version (9), Cooperative Threads (CUDA-CT)
were introduced to enable explicit synchronization between threads
within and across thread blocks, which enables an efficient imple-
mentation for global barriers [3]. Although CUDA-CT will partially
remedy the problems caused by device-level kernel launches, the
SM under-utilization problem mentioned above will remain due to
bulk-synchronization mechanisms across multiple TBs still present.

In an attempt to enable “true” data-dependent parallelism on
GPUs, several task-based software execution schemes have been
proposed to enable a producer-consumer model between tasks (i.e.
TBs) and SMs. These schemes resemble Dataflow execution models
[14, 18], but the main computation units are SMs instead of CPU
cores. Tzeng et al. [30] proposed a scheme where tasks with resolved
dependencies are inserted in a centralized first-come, first-served
(FCFS) queue and executed. [6] proposed a scheduler-worker-based
solution based on distributed queues, where task dependencies are
maintained by a scheduler thread block via an in-memory depen-
dency matrix and updated on-the-fly as the tasks are processed by
the worker TBs. However, the major drawback for all these software
solutions is their reliance on expensive global memory atomics as
well as busy-waiting to handle task insertion & retrieval operations
and inter-SM communication.

Fundamentally, there is a lack of support for conveying gener-
alized data-dependent parallelism and inter-SM synchronization.
While task-based execution schemes rely on long-latency global
memory, others focus on improving CDP-based kernels by compile-
or run-time optimizations to achieve better thread utilization for a
specific class of applications (i.e. nested parallelism). Yet none of
the aforementioned studies provide a generalized solution for an
arbitrary network of inter-block data dependencies. To this end, we
propose Wireframe1, a hardware-software approach which provides
generalized support for hardware execution of task-based depen-
dency graphs.

Wireframe is built on the abstraction of Dependency Graph (DG)
execution, where individual thread blocks are represented as tasks.
These dependency graphs can be generated either through pro-
grammer API (DepLinks), or compiler profiling [15–17, 27, 31].
The dependency graph is then enforced in the hardware through a
Dependency-Aware Thread block Scheduler (DATS).

In this work, we show that Wireframe can be utilized to support a
generalized dependency graph-based execution approach to enable
programmers to naturally convey data-dependent parallelism. In ad-
dition, we show that Wireframe can be used to support lightweight

1The name “Wireframe” stems from the similarities between the graphs utilized in our
benchmarks with standard 3D wireframe terrain models used in computer-aided design.

0

4 1

8 5 2

12 9 6

13 10 7

14 11

15

3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 1: Wavefront pattern execution of thread blocks in an
application kernel (left) and its equivalent dependency graph
(right). The numbers represent the node IDs.
barrier and deadlock-free inter-block synchronizations through de-
pendency graph primitives.

This paper makes the following contributions:
• In Section 2, we present a case for Wireframe and show how

the dependency graph abstraction can be generalized for data-
dependent parallelism and efficient synchronization.

• In Section 3, we present DepLinks to support programming
data-dependent parallelism. We also present support for run-
time dependency graph generation.

• Section 4 demonstrates hardware support for dependency
graph execution through dependency-aware thread block sched-
uling (DATS). DATS enforces dependencies with a Depen-
dency Graph Buffer (DGB) and maximizes ready nodes with
Level-bounded thread block scheduling.

• Section 5 involves evaluation for Wireframe using a range
of data-dependent workloads, measuring an average of 45%
performance boost, with ⇠2KB area overhead.

In Section 6, we discuss related literature and the paper finally
concludes in Section 7.

2 MOTIVATION
In this section, we motivate a case for Wireframe. We will make
use of Code Blocks 1-4 to motivate and drive this section. We use
a basic wavefront pattern, a common data-dependent parallel pat-
tern [7, 21, 35], as a running illustrative example due to its simple
structure and clarity in conveying concepts in this paper. It should be
stressed that our proposed technique is generic to all data-dependent
parallel patterns and in no way limited to the examples presented
here. Figure 1 displays a wavefront pattern. In wavefront parallelism,
computation are typically dependent on neighbors, where data de-
pendencies form diagonal ‘waves’ of computation (shown in blue).
We define task as an abstract unit of computation. In this example,
a task can be fine-grain and represent the computation of a single
element in the wavefront, or it can be coarse-grain and represent
a tile consisting of multiple elements. The dependencies between
tasks in this workload is shown on the right, as a directed graph,
which we call a dependency graph, with each node representing a
thread block.

2.1 Data-dependent Parallelism
We will now demonstrate CUDA’s current support for data-dependent
parallelism, and highlight its limitations and challenges. An imple-
mentation of wavefront processing using global barriers is shown in

601

WIREFRAME MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Code Block 1. Every wave computation maps to a kernel call, which
processes the computation for that wave. As demonstrated in various
prior work [6, 7, 29], this limitation of global barriers introduces
significant overhead due to multiple kernel launches and requires
programmers to map data-dependent parallelism to this rigid con-
straint. An alternative option so as to avoid multiple kernel launches
is to enforce synchronization of waves within the thread block. This
requires each wave to be processed entirely within a single thread
block, which would severely under-utilize the GPGPU hardware.

Code Block 1: Global Barriers
1int main() {
2for (int i=0; i<nWaves; i++) {
3kernel<<<GridSize, BlockSize>>>(args);
4cudaDeviceSynchronize();
5}
6}
7__global__ void kernel(args) { processWave(); }

In order to facilitate support for data-dependent nested paral-
lelism, CUDA Dynamic Parallelism (CDP) was introduced. CDP
enables device-side kernel launches, avoiding the overhead of host-
side kernel launches. Every device-side thread has the ability to
spawn a child kernel. CDP typically supports two common imple-
mentation methods - recursion and nesting. Code Block 2 shows
an implementation of CDP using a recursive pattern. Here every
wave is still processed by a single kernel and subsequent waves are
handled by recursively launching another kernel until every wave has
been processed. In lines 9-12, we have thread 0 spawning a single
child kernel and wait for its completion. A main limitation of the
recursive approach is the recursion depth limitation. In CDP, there
is a maximum nesting depth of 24 [2], i.e 25 waves at most. This
pattern works well for algorithms that can be mapped recursively,
but otherwise inflexible.

Code Block 2: Dynamic Parallelism - Recursive
1int main() {
2kernel<<<GridSize, BlockSize>>>(0, args);
3cudaDeviceSynchronize();
4}
5__global__ void kernel(i, args) {
6if(i == nWaves) return;
7processWave();
8if(threadIdx == 0) {
9kernel<<<GridSize,BlockSize>>>(i+1,args);
10cudaDeviceSynchronize();
11}
12__syncthreads();
13}

A more flexible implementation is shown in Code Block 3, where
nested parallelism is used. In this approach [8], a parent kernel
launches a child kernel for every wave. However, unlike recursive
parallelism where the child will also spawn a child kernel of its own,
the child returns, prompting the parent kernel to launch the next
child kernel, which resolves the spawning depth limit issue in the
recursive version. This approach is very similar to the global barriers
implementation, but with the overhead of device-side kernel launch
instead of host-side kernel launch.

Although this implementation is lower-overhead, the device-side
kernel launches still incur non-trivial overhead [34] and there is

also the limitation of coarse-grain synchronization across waves.
This implicit synchronization introduced by kernel launches limits
potential opportunities for nodes to run ahead and execute when
ready. For example, during the 4th wave, if nodes 9 and 12 are ready,
then node 13 is ready to execute, but has to stall until nodes 3 and
6 complete the wave. This limitation is mainly due to the 1-parent-
m-child representation of CDP, where child kernels can only have
a single parent. Thus the wavefront pattern has to be mapped to
coarse-grain synchronization at wavefront boundaries.

Code Block 3: Dynamic Parallelism - Nested
1int main() {
2parentKernel<<<GridSize, BlockSize>>>(args);
3cudaDeviceSynchronize();
4}
5__global__ void parentKernel(args) {
6for (int i=0; i<nWaves; i++) {
7if(threadIdx == 0) {
8childKernel<<<GridSize, BlockSize>>>(args);
9cudaDeviceSynchronize();
10}
11__syncthreads();
12}
13}
14__global__ void childKernel(args) { processWave(); }

In order to fully express the data-dependent parallelism of the
wavefront pattern, we need a generalized approach to convey n-
parent-m-child relationships. In our wavefront example, there are
parent-child relationships with 2-parent-1-child (e.g. node 9), 1-
parent-2-child (e.g. node 0), and 1-parent-1-child (e.g. node 12). To
this end, we present DepLinks, to support expression of generalized
data-dependent parallelism. DepLinks is built on the abstraction of
dependency graphs between tasks. In our framework, we partition a
task as a single thread block (or CTA2) in hardware.

Code Block 4: Wireframe
1#define parent1 dim3 (blockIdx.x-1, blockIdx.y, blockIdx.z);
2#define parent2 dim3 (blockIdx.x, blockIdx.y-1, blockIdx.z);
3void* DepLink() {
4WF::AddDependency(parent1);
5WF::AddDependency(parent2);
6}
7int main() {
8kernel<<<GridSize, BlockSize, DepLink>>>(args);
9cudaDeviceSynchronize();
10}
11__WF__ void kernel(args) {
12processWave();
13}

Code Block 4 shows how wavefront parallelism can be expressed
using DepLinks. In this scenario, we simply launch a kernel with a
sufficient number of thread blocks to represent the entire dependency
graph. One of the kernel launch options is a mapping function which
defines the graph. This function consists of dependency links which
are specified by dim3 structures and its job is to specify the relative
thread block on which any thread block is dependent. The depen-
dency graph will then be generated by running the mapping function

2We use thread block and CTA interchangeably

602

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Abdolrashidi et al.

Intra- Block Global Inter-Block

Thread

Thread
Block
Task
Barrier

Figure 2: Synchronization barrier primitives using dependency
graph abstraction: Intra-block (left), Global (middle) and Inter-
block primitives (right).

on every available thread block. For instance, in our wavefront exam-
ple, every node is dependent on its north and west neighbors. This
dependency graph will then be passed to the GPGPU hardware to
enforce data dependency at run-time. In the next section, we will
discuss this process in detail. Due to the fine-grain data-dependency
that we can convey, individual tasks can run ahead and execute when
parent tasks are complete. In this execution pattern, tasks are not con-
strained to waves. Overall, Wireframe enables a natural and flexible
way to convey data-dependent parallelism.

2.2 Barrier Synchronization Primitives
As mentioned before, another major challenge of data-dependent
parallelism is the lack of support for flexible barrier synchronization.
Inter-block synchronization can ease programmer burden by grant-
ing programmers flexibility to convey synchronization between TBs,
which has limited support in CUDA 9 with Cooperative Groups.
Our synchronization primitives have similar support as Coopera-
tive Groups, but we will later showcase how Wireframe can further
eliminate stalls due to barrier synchronization by supporting a pro-
gramming paradigm to avoid barriers completely. In this section, we
demonstrate how dependency graphs can be used to form primitives
that enable flexible lightweight synchronization across thread blocks.
Figure 2 shows the supported synchronization primitives.

Intra-block synchronization: As shown in Figure 2 (left), intra-
block synchronization implements a barrier among threads inside
of a single thread block. This is achieved with __syncthreads() in
CUDA . In our dependency graph abstraction, intra-block synchro-
nization can be conveyed through a 1-parent-1-child relationship
between tasks. Using this dependency graph representation actually
imposes greater overhead than __syncthreads() due to using 2
thread blocks to achieve this task. Therefore, we still rely on intra-
block synchronization using the standard __syncthreads() call.

Global synchronization: In Figure 2 (middle), a scenario is
shown where we assume the kernel consists of 4 thread blocks.
Traditionally, in order to globally synchronize all thread blocks, we
require implicit synchronization through consecutive kernel calls.
This suffers from significant overhead due to the need for host-side
kernel launches. Using the dependency graph abstraction, we can
represent global synchronization using a dependency graph where
each individual task after the barrier is dependent on every task
before the barrier. In this example, global synchronization is rep-
resented as a 4-parent-1-child relationship. This lightweight global
synchronization primitive completely eliminates the unnecessary
host- and device-side kernel launches.

Inter-block synchronization: In Figure 2 (right), we illustrate
inter-block synchronization with a scenario where thread blocks
synchronize in pairs. This is similar to the global synchronization
primitive where each individual task after the barrier is dependent
on every task before the barrier, but constrained to a subset of thread
blocks that are synchronizing. Supporting inter-block synchroniza-
tion is a key component towards fully-supported data-dependent
parallelism. What is unique about our approach is that this abstrac-
tion is deadlock-free. In prior work [36], a barrier is placed at the
end of the thread block and wait for all other thread blocks to reach
it. This results in some thread blocks staying in the SM, preventing
other thread blocks from being scheduled in, and they will subse-
quently cause a deadlock because they never got scheduled to be
finished. Unlike [36], our inter-block synchronization primitive does
not result in deadlock because parent thread blocks are allowed to
complete and exit the SM, with barrier dependencies checked before
a new thread block is issued to an SM.

3 WIREFRAME
Figure 3 shows an overview of the Wireframe framework. Wire-
frame consists of three main parts: DepLinks extensions to the
CUDA programming model, dependency graph generation, and
dependency graph execution in hardware through our dependency-
aware thread block scheduler (DATS). The programmer can express
data-dependent parallelism and barrier synchronization through our
CUDA programming model extensions. At kernel launch time, Wire-
frame would then retrieve the dependencies from the programmer
via the API, create the dependency graph in Compressed Sparse Row
(CSR) format and send it to the GPU hardware. Once the CSR is
received by the hardware, the GPU will make use of the dependency
graph to enforce data-dependent parallelism when scheduling TBs.

The interface between the software and hardware is simply an
abstraction of task dependencies represented as CSR. Therefore, our
framework is not tied to a specific programming interface. The de-
pendency information between tasks can be in the order of hundreds
of MBs, limiting prior dependency-based task scheduling to software
run-times [6, 19, 30, 36] with significant overheads. Wireframe, to
the best of our knowledge, is the first efficient hardware solution to
support and manage dependency-based task scheduling with only
2KB hardware overhead.

Note that the focus of this paper is on efficient hardware sup-
port of statically generated dependency graphs. There are currently
many efforts in various compilers and programming paradigms to
convey task dependencies in CPUs [15–17, 27, 31]. For example,
OpenMP [17, 27] contains extensions to define tasks and dependen-
cies using the depend clause. This information is utilized to create
a directed acyclic graph of the tasks. Till date, there is no software
run-time-agnostic API for GPUs to convey task dependencies. This
paper makes an argument for dependency awareness extensions to
CUDA, and demonstrates the potential benefits.

As the main focus is on hardware support for dependency graph
execution, we propose a simple API in order to convey static task de-
pendencies. It will generate a CSR dependency graph, which enables
easy interpolation with any future task dependency programming
paradigms. Automatic generation of the graph is future work.

603

WIREFRAME MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Host
(CPU)

Device
(GPU)

#define parent1 dim3 (blockIdx.x-1,
blockIdx.y, blockIdx.z);
#define parent2 dim3 (blockIdx.x, blockIdx.y-
1, blockIdx.z);
void* DepLink() {
 if (blockIdx.x > 0)
WF::AddDependency(parent1);
 if (blockIdx.y > 0)
WF::AddDependency(parent2);
}
int main() {
 kernel<<<GridSize, BlockSize,
DepLink>>>(0, args);
}
__WF__ void kernel(args) {
 processWave();
}

Programming Model Dependency
Graph

Global Memory

Global Node Array

Global Edge Array

TB Scheduler

Convert to CSR

Node Array

Edge Array

Pending Update Buffer

DATS Hardware
(Dependency Graph Buffer)

Local Edge Array

Local Node Array

Node Insertion Buffer

Figure 3: Overview of Wireframe; programmer supplied depen-
dency constraints are translated into a dependency graph at
run-time and conveyed to the GPU, where it is scheduled for
execution through the DATS hardware.

3.1 DepLinks API
In this section, we present our DepLinks API and how it maps the
TBs to the nodes in the dependency graph. Later, we discuss the
in/out dependency concept from OpenMP which could also be used
to profile and generate dependencies.

DepLinks requires API calls for scheduling policy assignment,
inter-block synchronization, and assignment of parents for every
thread block. In addition, DepLinks supports executing different
kernels with different dependency graphs.

Code Block 5: Wireframe API Example
1#define node1 dim3 (blockIdx.x-1, blockIdx.y, blockIdx.z);
2#define node2 dim3 (blockIdx.x, blockIdx.y-1, blockIdx.z);
3

4void* DepLink() {
5//Add dependency for every thread block
6WF::AddDependency(node1);
7WF::AddDependency(node2);
8

9//Set the policy for the hardware
10WF::SetPolicy(WF::LVL,4);
11}
12

13__WF__ void kFunction(<args>)
14{
15//Do kernel execution
16}
17

18void main()
19{
20//Launch kernel kFunction()
21dim3 dimGrid(4,4,1), dimBlock(16,16,1);
22kFunction<<<dimGrid, dimBlock, DepLink>>>(<args>);
23}

We demonstrate our API in Code Block 5. The code block imple-
ments a kernel, kFunction (line 22). The kernel calls are extended
with a mapping function, DepLink (lines 4-11). The kernel maps a
wavefront dependency graph similar to Figure 1. For every thread
block in the kernel, it will call the mapping function to identify its
parent dependency. In wavefront dependency, each node is depen-
dent on its west (x-1) and north (y-1) neighbors. We have defined
this in lines 1 and 2. However, the thread blocks do not always have

identical dependency patterns. In that case, conditional statements
could be utilized to differentiate dependencies related to different
groups of blocks.

The AddDependency() call will map the dependencies to the
thread block. In addition, in line 10, the thread block scheduling
policy is specified as level-bound (LVL) with a range limit of 4, i.e.
running TBs in the graph cannot be more than 4 levels apart. Overall,
it is possible to declare wavefront dependency pattern in less than
10 lines of code.

Note that our API function implements boundary checking to
handle invalid arguments. For example in the DepLink() function,
for block ID (1,0,0), node1 will have negative elements in which the
API will correctly handle and ignore. Similarly, block ID (0,0,0) will
have no parent nodes.

Similar to OpenMP depend clause, we only need to specify each
edge in a dependency graph. Using this simple, yet flexible, API
we can also easily implement any synchronization barrier primitives
shown in Figure 2.

Profiling-based generation: The OpenMP depend clause pro-
vides a list of dependent inputs and outputs for each task. This data
flow information is then utilized to generate a DAG. Similarly, ker-
nel calls in global barriers implementation follow a similar pattern,
with input and output data to the kernel managed by cudaMemcpy.
Therefore, it is feasible to extract data dependencies from the global
barriers implementation by obtaining the data flow between the ker-
nels without programmer intervention. Due to the indexing nature
of TBs in CUDA programming, we can also profile the data flow
between thread blocks to identify dependencies and generate the de-
pendency graph. In prior work [15] parallel task-based dependencies
were extracted from sequential programs using a similar technique.

3.2 Dependency Graph Generation
At kernel launch time, the program creates a static dependency graph
based on the programmer-supplied dependencies.

In order to pass this information to the GPU in a compact manner,
we chose to represent the dependency graph in modified compressed
sparse row (CSR) format. The API gives us a list of nodes and
edges from which we can generate the CSR with time complexity of
O(|V |+ |E|). Our dependency graph CSR representation is shown in
the upper half of Figure 6.

CSR consists of two arrays: a Node Array and an Edge Array.
Every Node Array entry corresponds to a node, with three fields:
Edge start, Parent count, and Level. How they are used is explained
in the Section 4.2.1.

In Figure 6, the numbers in the Node Array correspond to the
start indices in the Edge Array. For example, node 0 has child nodes
1 and 2, node 2 has child nodes 3 and 4, etc.

Our customized CSR array contains the number of nodes in the
Node Array, the edge start and edge count for every node (in short,
location of child nodes in the edge array and the number thereof),
the number of edges and the nodes to which they lead.

A major challenge of using dependency graphs is their size. The
size of the dependency graph is arbitrary and can be very large in the
order of MBs. So the full CSR should be stored in the global memory
(or constant memory if size permitting) of the GPU. However, the
thread block scheduler requires dependency information from the

604

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Abdolrashidi et al.

CSR in order to schedule thread blocks, which can be very slow
with global memory access. To overcome this challenge, we will
exploit spatial locality behaviors of actively executing nodes and
their immediate child nodes in the dependency graph.

3.2.1 Dependency Graph Execution Properties. We observed that
during the execution of data-dependent parallel applications, there
exists spatial locality of actively executing nodes and immediately
dependent nodes. In our dependency graph, there are no explicit or
implicit barriers across different levels of the dependency graph. Due
to the fine-grain dependency representation, it is possible for ready
nodes to process ahead even when prior levels of the dependency
graph are not fully processed. Despite this freedom, we observe that
there exists a narrow ‘window’ of levels in which active nodes are
executing. We demonstrate this in Figure 4. We ran the HEAT2D
application with a dependency graph of 9216 nodes and 191 levels in
GPGPU-Sim [5]. During run-time, we measured the level range of
active tasks over the course of the application run. We observed that
even though the dependency graph has 191 levels, the level range
of the active nodes grows no more than 7. We found this behavior
common in data-dependent parallel workloads.

Using this key observation, we can buffer only a small subset of
the dependency graph in the thread block scheduler to effectively
support a dependency graph of any size, while still enabling the
thread block scheduler to quickly keep track of dependency statuses
at run-time. We will discuss this hardware mechanism in detail in
Section 4.

Figure 4: Level range during HEAT2D application.

3.2.2 Dependency Graph Node Renaming. By buffering subsets
of the dependency graph, we are exploiting level locality. How-
ever, the current dependency graph and CSR format may not be
amenable to buffering as CSR stores tasks in sequential node ID
order (as defined by thread block IDs). In order to efficiently buffer
the dependency graph, we need sequential ordering of levels and
node IDs. As shown in Figure 5 (left), the dependency graph for
the wavefront application in Figure 1 does not exhibit sequential
level-by-level numbering. Therefore access to the CSR will result in
non-contiguous global memory access, which also introduces major
complexity issues when fetching nodes to buffer, as well as the man-
agement of the buffer. To overcome this, we perform a sequential
level-by-level renaming transformation to the dependency graph as
illustrated in Figure 5 (right).

Rather than changing the actual thread block IDs, we rename the
node IDs. The dependency graph will be analyzed, every node’s
parents, children and level will be determined, and then each node
will be assigned a ‘virtual ID’ (VID), which will be used exclusively
by the thread block scheduler. The original thread block ID remains
intact and is used as normal. The procedure is similar to breadth-first
search and is performed at run-time. In the beginning, all nodes

Renaming

Actual Node ID Virtual Node ID
0

1 2

3 4 5

6 7

8

9

0

3 1

8 4 2

9 5

6

7

Figure 5: Illustrative example of node renaming

with no parents will be considered level 0. We then move down
the graph and assign the child nodes recursively. For every child
node with exactly one parent, the level of the child will be: lvlchild =

lvlparent +1. For a general case where there are N parents, the level of
the child will be: levelchild = 1+max{levelparenti},1 i N. When
we move from every parent to a child, it increments the “parent
counter” in the child node, which represents the number of parents
for that node when this process is finished. This will be used in TB
scheduling shown in the following sections.

4 DEPENDENCY-AWARE THREAD BLOCK
SCHEDULER (DATS)

In the previous sections, we described the DepLinks programmer in-
terface and how dependency graphs are generated. In this section, we
describe how the GPGPU hardware enforces dependencies through
a dependency-aware thread block scheduler (DATS). As described
in the last section, we use the CSR format to store the nodes and
edges of a dependency graph, which is generated at run-time and
transferred to the GPU’s global memory. The CSR representation of
the dependency graph in Figure 5 is illustrated in the global memory
section of Figure 6.

4.1 GPGPU Architecture Overview
We target an NVIDIA Fermi-like architecture modeled after the
GTX480. Our architecture comprises of 15 streaming multiproces-
sors (SM), where every SM in Fermi can execute up to 1536 threads
or 8 thread blocks (CTAs). A thread block scheduler is responsible
for issuing any ready thread block to an available SM. The technique
that we present in this paper is agnostic to the GPGPU microar-
chitecture and is self-contained within the thread block scheduling
mechanism. Kernel parameters are stored in the global memory.
There is already a communication path between the global memory
and the kernel management/distribution unit [34] to allow transfer
of the CSR into the thread block scheduler. In this architecture, we
assume only single kernel execution.

4.2 Dependency Graph Buffer
The Dependency Graph is stored in CSR format in the global mem-
ory. It is infeasible for the thread block scheduler to keep track of the
graph node states in the global memory. Therefore we propose the
addition of a Dependency Graph Buffer (DGB) into the thread block
scheduler to buffer a subset of the CSR, sized large enough to keep
the execution flowing and prevent it from stalling. In Section 3, we
observed that there is spatial locality in the actively executing and
immediate dependent nodes of the dependency graph. Therefore, we
can buffer this active ‘window’ of nodes of the dependency graph in

605

WIREFRAME MICRO-50, October 14–18, 2017, Cambridge, MA, USA

0 2 4 6 7 9 11 12 14

1 2 3 4 4 5 6 6 7 7 8 9 8 9 9

Global Node Array

Global Edge Array

GLOBAL MEMORY

0 2 4 4
0 1 2 3

6 7 7 8 9 8 9 9

DEPENDENCY GRAPH BUFFER (DGB)
Local Node Array

Local Edge Array

Global Edge Start

Global Node ID

Local Edge Start

Global Node IDH

0 1 2 3 4 5 6 7 8 9 10 11 1312 14

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

Edge Start Parent
Counter Level

32 bits 16 bits 16 bits

Base
Pointer

Translation of Global Edge Start to Local Edge Start

Pending Update Buffer

Node Insertion Buffer

Figure 6: Connections between the global memory and local De-
pendency Graph Buffer for the graph in Figure 5.

the Dependency Graph Buffer in order to keep track of dependency
states in a low-overhead manner.

The Dependency Graph Buffer is showcased at the bottom of
Figure 6. The Dependency Graph Buffer consists of Local Node
Array, Local Edge Array, Pending Update Buffer, Node Insertion
Buffer, and Node State Table (not shown, details in Figure 7). The
Local Node Array and Local Edge Array are implemented as circular
buffers. The Node State Table is tightly coupled with the Local
Node Array, where every node entry of the Local Node Array has
a corresponding entry in the Node State Table. The node and edge
values for the relevant dependency graph are stored in the global
memory in the format shown at the top of Figure 6.

When moving portions of the global node/edge array into the
local node/edge array, we re-index the global edge start to a local
edge start. This is done using a simple modulus-based mapping
function to minimize the size of the local node array entries. The
local arrays will be loaded from memory in bursts of 128 bytes, the
memory request size, to maximize memory load utilization.

We will now discuss the Dependency Graph Buffer in detail.

4.2.1 Node State Table. The Node State Table is shown in Fig-
ure 7 and contains the following fields:

State: Signifies whether the node is Waiting (W), Ready (R), Pro-
cessing (P), or Done executing (D). Initially all nodes are initialized
to the Waiting state, except for the nodes with no dependencies
which are set to Ready.

Parent Count: For every node, it shows number of unfinished
parent nodes. It is computed in the host and transferred to and stored
in the global CSR memory at run-time.

Level: The maximum distance of every node from a root, i.e. a
node with no dependency. It is also computed at the host, to be used
for thread block scheduling as discussed in Section 4.3.

Global Node #: The virtual node ID of the dependency graph,
which indexes into a node in the Global Node Array.

Local Edge Start: The address of the first child of the node in the
local edge array. If there were no children, it will be set to -1. The
number of children can be determined by finding the difference of
two consecutive edge starts.

4.2.2 Dependency Graph Bu�er (DGB) Management. We will
now demonstrate the operation of our DGB management mechanism.
To illustrate the operation of our scheme, we make use of the DGB
structure shown in Figure 7.

Transferring Nodes/Edges from Global Memory to DGB: The
hardware fetches ‘chunks’ of nodes and edges from the global mem-
ory into the DGB. A chunk is defined as the number of the entries
of the Local Node array which fit in a single memory request from
the global memory (128B) to the DGB. In our running example, a
chunk is 2 node entries, the Node Array size is 4, and Edge Array
size is 12. During the transfer, the ‘edge start’ field of the local node
array is re-indexed so they point to the local edge array directly. The
Local Edge array, on the other hand, will keep the global node IDs
so they can be used to update the parent counter of children nodes.
To illustrate this, let’s look at global node ID 4. In Figure 6, this
refers to index 4 of the Global Node Array, which contains a Global
Edge Start of 7. The neighbor node (ID 5) has a Global Edge Start of
9, which means node 4 has 2 children. At index 7 of the Global Edge
Array we see that node 4 has node 6 for a child, and at index 8, node
4 has child 7. Once node 4 is transferred to the DGB, as illustrated
at the bottom of Figure 6, ID 4 has a transformed local edge start of
0, which points to index 0 of the local edge array. Index 0 and 1 of
the local edge array contain the global node ID of children 6 and 7.

Translating Global to Local: The translation of the edge start
from the global memory to the local memory is modulus-based:
LESi = (GESi)%|LEA|, where LESi is the translated Local Edge
Start for node i, GESi is the Global Edge Starts for nodes i and
|LEA| is the size of the Local Edge array. Let us use Figure 6 as an
example, where |LEA| = 8. Suppose that nodes 0 to 3 are already
inserted in the DGB along with their edges, so they are both full.
Then nodes 0 and 1 finish and, as a result, are invalidated in the DGB.
Since the chunk size is 2, nodes 4 and 5 load into the DGB. As the
Global Edge starts for nodes 4 and 5 are 7 and 9, their new Local
Edge starts will be LES4 = 7%8 = 7,LES5 = 9%8 = 1 respectively.

The local node address for node i is also modulus-based. At
the time of the node’s insertion from the global memory into the
dependency graph buffer, the operation is performed in the following
address: LNIDi = i%|LNA|, where LNIDi is the local address for
node i at the time of its insertion and |LNA| is the size of the Local
Node array. Since both i and |LNA| are known before the node’s
insertion into the Local Node Array, the hardware can predict the
future location of any node in the said array. In the event of any
new node transfer, the hardware will compare the global node ID of
the new node and the target location to check if the latter is indeed
unused. If the location is occupied by a prior node, it would terminate
the memory transfer and put the node in the node insertion buffer
until the space becomes available.

Handling Head Pointer Node Once the nodes are inserted into
the graph buffer, ready nodes can be issued in any order. The only
exception is the last node pointed by the head pointer. When a ready
node completes, it decrements the parent counter of each children. In
order to do so, we must know the number of children each node has
by subtracting its local edge start from that of the next node’s local
edge start. For the last node pointed by the head pointer, it cannot
determine the number of children due to the absence of a next node.
We handle this scenario by not scheduling the head pointer node,
unless the node is childless, e.g. the last node.

606

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Abdolrashidi et al.

Global Node# 0 1 2 3
Parent Count 0 1 1 2

Level 0 1 1 2

State P W W W

Local Node
Array 0 2 4 6

Local Edge
Array 1 2 3 4 4 5 6

Pending Update
Buffer

H

T H

T

(a) Initial state: Global Node 0 is
processing. Global Nodes 1, 2, 3 are
in the waiting state.

Global Node# 0 1 2 3
Parent Count 0 0 0 2

Level 0 1 1 2

State D R R W

Local Node
Array 0 2 4 6

Local Edge
Array 1 2 3 4 4 5 6

Pending Update
Buffer

HT

T H

(b) Node completion: Global Node
0 is finished, parent counters for
global nodes 1 and 2 decrement,
nodes become ready. Tail pointer
moves to next valid entry. Global
nodes 1 and 2 will begin processing
when TB scheduled.

Global Node# 0 1 2 3
Parent Count 0 0 0 1

Level 0 1 1 2

State D P D W

Local Node
Array 0 2 4 6

Local Edge
Array 1 2 3 4 4 5 6

Pending Update
Buffer 4 5

HT

T H

(c) Node completion w/o local child:
Global node 2 completes execution
and seeks to decrement the parent
counters of its children, nodes 4 and
5. Since they are not in the node ar-
ray yet, the updates are saved for
later in the pending update buffer.

Global Node# 0 1 2 3
Parent Count 0 0 0 0

Level 0 1 1 2

State D D D R

Local Node
Array 0 2 4 6

Local Edge
Array 1 2 3 4 4 5 6

Pending Update
Buffer 4 4 5

HT

T H

(d) Global node 1 also completes and
decrements parent counter for global
node 3 and 4. Global node 3 is now
ready. Global node 4 is not in the
graph buffer yet, the update will
be saved in the update buffer. Tail
pointer moves to next valid entry.

Global Node# 4 5 2 3
Parent Count 2 1 0 0

Level 2 2 1 2

State W W D P

Local Node
Array 0 2 4 6

Local Edge
Array 6 7 7 4 4 5 6

Pending Update
Buffer 4 4 5

H T

TH

(e) Loading nodes: Enough spaces
in the local node array prompt the
graph buffer to load more content.
Nodes 4 and 5 will be loaded into the
graph buffer. Head pointer moves.
Node 3 begins execution.

Global Node# 4 5 2 3
Parent Count 0 1 0 0

Level 2 2 1 2

State R W D P

Local Node
Array 0 2 4 6

Local Edge
Array 6 7 7 4 4 5 6

Pending Update
Buffer 4 4 5

H T

TH

(f) Pending Update Buffer Removal:
Node 4 parent counter decremented
from pending update buffer entries.
Global node 4 parent counter be-
comes 0, thus ready for execution.

Global Node# 4 5 2 3
Parent Count 0 0 0 0

Level 2 2 1 2

State R R D P

Local Node
Array 0 2 4 6

Local Edge
Array 6 7 7 4 4 5 6

Pending Update
Buffer 5

H T

TH

(g) Global node 5, which will now re-
ceive the updates from the pending
update buffer and become ready.

Figure 7: Management of Dependency Graph Buffer.

Node Completion Figure 7b illustrates the scenario where a node
completes execution. This running example starts with nodes 0-3
in the DGB, with node 0 executing as shown in Figure 7a. Since
node 0 has no parents, it has level 0 and will be the first to execute.
When node 0 completes, we first fetch the children of node 0 (node
1 and node 2). Each child is accessed and their parent counter is
decremented. Once a parent counter reaches 0, it indicates that all
dependencies are met, and its state is updated to ready.

After decrementing the parent counters, the entry associated with
the node which finished is invalidated as shown by the lighter text.
Recall that the Local Node/Edge Arrays are circular buffers. As the
tail entries are invalidated, we move the tail to the next valid entry.
In this case, the tails moved to Local Node Array index 1 and Local
Edge Array index 2. In addition, the execution of thread blocks can
be completed out of order in the array as shown in Figure 7c, where
node 2 has finished executing while node 1 is still being processed.
We only move the tail if the tail’s entry is invalidated.

Pending Update Buffer Insertion: Note that when node 2 fin-
ishes, the children nodes 4 and 5 are not in the node status table,
and thus we cannot decrement their parent counters. To overcome
this overflow, we add a Pending Update Buffer (PUB) to handle the

situation where the child node is not in the Local Node Array. The
PUB stores the global node ID of the child. This is illustrated in Fig-
ure 7c, where node 2 has finished executing and attempts to update
the parent counters of its children, nodes 4 and 5. Since neither of
those nodes is in the graph buffer yet, it will use the PUB to save the
changes so they can be applied later. Note that if the buffer is full,
the hardware cannot mark the node as complete if it has children.
Therefore it has to wait until there is enough space before the node’s
execution can be finalized.

Loading Local Node/Edge Array Entries As shown in Fig-
ure 7d, node 1 will complete, and decrement the parent counter
for its children nodes 3 and 4. Node 3’s parent counter is now at 0
and its state is updated to ready. Node 4 is not in the Node State
Table, and is thus put into the PUB. At this point, the entries for
node 1 and 2 are invalidated and the tail advances to index 3 (node
3). At this point in time, there is enough empty space in the Local
Node Array to load a new chunk of nodes. We can keep track of the
available space using the distance between the head and tail pointers.

A memory request is issued to the global memory and the next
chunk is fetched from it. From the head pointer in the Local Node

607

WIREFRAME MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Array, we can generate a memory access to load the next node based
on its ID: BaseAddressGlobal +NodeID⇥NodeEntrySize.

The Global Node Array entries contain the global edge start,
which points to the Global Edge Array. Memory requests are itera-
tively issued to fetch the Global Edge Array entries with memory
address location calculated similar to accessing Global Node Array.

The hardware loads a new chunk from the global memory into
the node array where the head pointer is, followed by the associated
data in the edge array, starting from the edge head pointer. This is
depicted in Figure 7e. A node’s insertion is only finalized if there
are enough spaces for its edges in the Local Edge Array. Otherwise
the node shall be put in a temporary node insertion buffer to wait
and the loading process halts. The next nodes will not also be loaded
until enough space for the node in question and its edges is available
in the Local Edge Array, in which case loading will resume. If the
node’s insertion into the local memory is successful, the head pointer
will then also move. Note that the edges to which the nodes will be
pointing have been translated to their local counterparts beforehand
as described earlier in this section.

Pending Update Buffer Removal: Figure 7f shows the scenario
when nodes 4 and 5 are loaded into the Node State Table. At this
point in time, the update buffer contains two updates for node 4
(one each from completion of node 1 and 2), and one update for
node 5 (from node 2). When a node with a registered ID in the
update buffer is loaded into the Node State Table, the parent counter
update will be applied and the entry in the update buffer removed.
For example, in Figure 7f, the two pending node 4 entries decrement
the parent counter of node 4 to 0, changing the state of node 4 to
ready. Similarly, the update to node 5 will also be applied, marking
it as ready (Figure 7g).

4.3 Level-bound Thread Block Scheduling
Up until now, we have described how dependencies between thread
blocks are enforced and managed in hardware. We will now discuss
how ready thread blocks are scheduled to SMs. We first present the
baseline thread block scheduling policy, and then motivate the need
for a thread block scheduling policy for dependency graphs.

The baseline default policy is Loose Round-robin (LRR). It first
selects a ready node with the smallest ID, and cycles among all
the SMs, selecting the next SM to issue to. If the intended SM is
already full, the policy will move to the next available SM. This
policy attempts to evenly distribute the workload among the available
resources. However, this scheduler is very simplistic and does not
account for dependency graph execution dynamics, which leads to
performance hindrance.

We will again borrow the wavefront example from Section 2 to
illustrate dependency graph execution dynamics. In coarse-grain
synchronization scenarios (global barrier, CDP), each level of the
dependency graph is executed until completion, one after another. As
a result, nodes ready in subsequent levels cannot be scheduled and
must wait until the preceding level is complete, limiting performance.
Dependency graph execution allows any ready node to run ahead
and execute without having to wait until the prior level is completed.

However, we observed that if nodes run ahead too far, it can end
up hampering the performance. This is illustrated in Figure 8. Here
8 nodes (marked with ‘D’) have completed execution. On the left,
we depict a potential scenario with the baseline LRR policy where

D

D D

DR D

11 R D

2 1 D

2 D

3 R

D

D D

DD D

RR D D

11 1 R R

2 1 1

1
2
3
4
5
6
7

Level Level-boundedUnbounded

Figure 8: Effect of thread block scheduling on Dependency
Graph node availability.

nodes can run ahead unbounded. There is significant run-ahead, with
ready nodes (’R’) spanning a level range of 4 (in levels 3, 4, and
7). Due to a single path running ahead, it can potentially limit the
number of ready nodes. In the case of wavefront, there are significant
data-dependencies with most nodes dependent on 2 parents from the
previous level. If a dependency graph observes a high level range, it
means that neighboring nodes may have more dependencies pending.
For example, in Figure 8, the numerical values within the immediate
neighboring nodes of completed and processing nodes represent the
levels of dependencies that must be resolved before that node can
run. Due to the run-ahead, neighboring nodes have a longer chain of
dependencies with less nodes ready in the near future (only 3 nodes
have 1-level dependency).

To this end, we propose Level-bounded (LVL) thread block sched-
uling, which extends the LRR thread block scheduler by bounding
the level range to satisfy dependencies quicker. This results in greater
ready node availability as shown in the figure. Under level bound-
ing, we have 5 nodes with 1-level of dependency, and also 4 ready
nodes. Intuitively this scheduler operates in the following manner:
If a path runs ahead too far (reaches a level range limit), the Level-
bounded scheduler will prevent that path from proceeding further
and favor scheduling nodes from slower paths to allow the level
range to narrow. Bounding the level range promotes completion of
node dependencies, resulting in more ready nodes than the baseline
unbounded scenario.

5 EVALUATION
5.1 Methodology
We evaluate Wireframe on GPGPU-Sim v3.2 [5]. We use the default
NVIDIA GTX480 configuration with 15 SMs, each having 8 CTAs,
128KB register file and 16KB L1 cache size. The shared L2 cache
size is 786KB. The warp scheduling policy follows a greedy-then-
oldest (GTO) policy [24]. Our thread block scheduling technique
can be run with any warp scheduler, but we find GTO to provide
the best performance. We modeled the device-side kernel launch
overheads by implementing the latency model proposed in [34]. We
measured empirically and used the host-side kernel launch time of
30µs. The baseline machine runs at a core clock of 700MHz, where
each SM consists of 2 shader processors (SP), each containing 32
CUDA cores, 16 LDST units and 4 SFUs.

We utilize a selection of data-dependent heavy workloads. For
each workload, we implement four versions: Global Barriers (Global),
CUDA Dynamic Parallelism (CDP), DepLinks synchronization
primitives (DepLinks), and Wireframe with the LRR scheduler
(LRR) and Level-bound scheduler (LVL). For the level-bound sched-
uler, we use a level bound of 3. Note that DepLinks enables barrier
synchronization primitive support through task graph representation

608

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Abdolrashidi et al.

and does not change the way TBs are assigned to SMs. LRR and
LVL, on the other hand, do not enforce any barrier behaviors, but
rather control the TB assignments, allowing nodes with satisfied de-
pendencies to execute, enabling them to run-ahead instead of waiting
for other nodes at their level to finish first.

We verified the output of each workload implementation against
the original to ensure output correctness and that dependencies are
satisfied safely. Unless otherwise stated, we partition the workload
with up to 4K nodes in the dependency graph. We will later explore
the impact of the size of dependency graph on performance. In
addition, we used a Local Node Array size of 128 entries and a
Local Edge Array size of 512 entries for LVL scheduler, and 512
entries and 2K entries for LRR scheduler, respectively. We set the
size of the Pending Update Buffer to 64 entries.

5.2 Benchmarks
The benchmarks used are DTW (Dynamic Time Warping) [22],
HEAT2D [25], HIST (Histogram) [23], INT_IMG (Integral Image)
[9], SOR (Successive Over-Relaxation) [12] and SW (Smith Water-
man) [26]. DTW is a common algorithm in time series analysis for
measuring similarity between two time series with varying speeds.
DTW takes in two time series, one of size 12K and one of size 8K.
HEAT2D is a common solver for heat equations in two dimensions.
At every iteration, the temperature of each point is dependent on
neighboring points. We use a 2D grid of size 12K x 12K. HIST cal-
culates the integral histogram over a 13MP bitmap image. INT_IMG
is an image processing technique that generates the sum of values
in a rectangular subset of a grid. We similarly use INT_IMG with a
13MP bitmap image. SOR is a linear system solver which is imple-
mented using a generic 5-way stencil pattern. We use a random 2D
matrix with 144M entries as input. SW is a common local sequence
alignment algorithm. We input two 8K strings. We verified that the
size of the data is sufficient to utilize the entire GPU (maximize
hardware CTAs, cache, etc.) with each workload’s data set size in
the order of hundreds of MBs.

5.3 Evaluation Results
Performance: Figure 9 illustrates the speedup for all implemen-
tations with respect to Global Barriers. Speedup is the ratio of the
total execution time and kernel launch overhead for a given tech-
nique, with respect to the baseline global implementation. It shows
how much every technique addition, up to LVL, is responsible in
improving the performance. In all scenarios, CDP and our proposed
techniques outperform global barriers by removing costly host- and
device-side kernel launches. CDP has an average speedup of 6.87%.
DepLinks further remove device-side kernel launches and improve
average speedup by 25.07%. Wireframe further enables task run-
ahead. On average for Wireframe, LVL outperforms LRR (31.81% vs
29.81%). In certain scenarios, such as HIST, LVL performs slightly
worse due to limited improvement to level range properties.

Memory Overhead: Figure 10 (left) shows the memory request
overhead introduced by DATS. At most, DATS introduce 0.16%
memory request overhead, with an average overhead of 0.12%. De-
spite making use of the global memory, Wireframe does not have a
substantial negative impact to L2 cache performance as shown in
Figure 11. In addition, the miss rate is consistent regardless of the
programming model of Wireframe used (DepLinks vs LRR/LVL).

0.9

1

1.1

1.2

1.3

1.4

D
TW

H
EA

T2
D

H
IS

T

IN
T_

IM
G

SO
R

SW

A
ve

ra
geN
or

m
al

iz
ed

 S
pe

ed
up

LVL LRR DepLinks CDP Global

Figure 9: Normalized Speedup w.r.t Global Barriers

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

M
em

or
y

re
qu

es
t

ov
er

he
ad

 % LVL

0
1
2
3
4
5
6
7
8

M
ax

 le
ve

l

LRR LVL

Figure 10: Memory request overhead (left) and maximum level
range (right).

Level Range: Figure 10 (right) shows the impact of the LVL
scheduler, with level bound of 3, on the maximum observed level
range. We utilize a dependency graph of 9K as the benefits of level-
bounding is more apparent with larger graphs. The observed level
range can actually be less than the bound. For example, GTO warp
scheduler focus on the warps of thread blocks on the lower levels
(older TBs) so they can finish faster, resulting in a lower range than
anticipated. In certain scenarios, the level range reduced drastically
from 7 to 2 (DTW) and 6 to 2 (SOR), with an average level range
dropped from 5 to 2.

0.1

0.15

0.2

0.25

0.3

DTW HEAT2D HIST INT_IMG SOR SW Average

L2
 m

is
s

ra
te

Global DepLinks LRR LVL

Figure 11: L2 miss rate
Dependency Graph Size: Figure 12 (left) shows the effect of

dependency graph size on overall speedup for the level-bound sched-
uler normalized to the global barriers implementation. As the size of
the graph increases, there is generally more levels, and greater oppor-
tunity for run-ahead. In addition, this is associated with removal of
more global barriers. This can be observed as the average speedup in-
creases as the graph size grows: 14.11% for 1K, 31.81% for 4K, and
45.07% for 9K dependency graph size, with a maximum speedup of
65.20%. Furthermore, Figure 12 (right) shows the computation time
to kernel launch time ratio with a constant data size. Therefore the
ratio decreases as the graph grows. Notwithstanding, on average, we
have significantly more computational time than kernel launch time,
with an average of 8x, 5x, and 3x more compute with graph size 1K,
4K, and 9K, respectively.

609

WIREFRAME MICRO-50, October 14–18, 2017, Cambridge, MA, USA

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

O
ve

ra
ll

Sp
ee

du
p

(L
VL

) 1K 4K 9K

0
2
4
6
8

10
12
14

C
om

p/
La

un
ch

 R
at

io 1K 4K 9K

Figure 12: Overall speedup for different graph sizes (left) and
compute-to-kernel-launch ratio (right)

5.4 Overheads
Sensitivity to Local Node/Edge Array Size: Figure 13 (left) shows
the maximum pending update buffer usage (solid line) and the IPC
(dotted line) with respect to varying the Local Node Array size for
LRR and LVL using the SOR benchmark. We present SOR as it
utilizes PUB the most. The LVL scheduler requires a notably smaller
update buffer than the regular LRR scheduler. We use a node array
size of 128 entries as it provides a high level of IPC for LVL, with a
manageable PUB usage of almost 32 entries, which we pick as the
best size for PUB. For a PUB usage of equal size, LRR scheduler
requires Local Node Array size of 512.

Figure 13 (right) shows how the maximum pending update buffer
usage changes as we decrease the Local Edge Array size. We set the
Local Node Array size as before. For LRR, IPC falls as we use less
than 512 entries. Thus we select 512 as the best edge array size. LRR
meanwhile requires over 1K entries. LVL scheduler can significantly
reduce the size of the Local Node/Edge Array needed.

Dependency Graph Buffer Size: The DGB requires very little
space. Each local node array entry needs 2 bits for state, 16 bits for
the global node ID, 16 bits for the parent counter, 16 bits for the
level and 9 bits to address the local edge array, i.e. 58 bits in total,
which rounds up to 8 bytes for each node in the Node State Table
and Local Node Array. As for the Local Edge Array, it only needs
16 bits per element to store the target’s global node ID, for a total
of 1KB. In addition, we have a Pending Update Buffer of 32 entries
of 2 bytes each and a single Node Insertion Buffer of 128B, for a
total of 256B. In total, the DGB has a size of 2304 bytes, which is
negligible in comparison to the size of register file per SM (128KB).

DGB Access Overheads: We can access and update the DGB
quickly due to the small size. Any timing overheads would occur
due to fetching chunks from memory. However, this operation is off
the critical path as fetching of memory chunks can occur as TBs are
executing on SMs. The only time there may be timing penalties due
to our DGB mechanism is if there are no ready nodes due to nodes
still being loaded from memory. Due to having a Local Node Array
size of 128 entries, we observed that this scenario is rare as there are
always plenty of other nodes to schedule. We observed the timing
overheads of DGB to be less than 1%.

6 RELATED WORK
Synchronization: Existing GPGPU programming models have
been designed with support for coarse granular synchronization
primitives (commands and streams in CUDA, events and pipes in
OpenCL, and pipelines in OpenACC) to enable flow control across

0
100
200
300
400
500
600

0
20
40
60
80

100
120
140
160

IP
C

M
ax

 U
pd

at
e

bu
ffe

r
S

iz
e

(e
nt

rie
s)

Local Node Array Size (entries)

LRR_PUB LVL_PUB LRR_IPC LVL_IPC

0

100

200

300

400

500

600

0

50

100

150

200

IP
C

M
ax

 U
pd

at
e

bu
ffe

r
S

iz
e

(e
nt

rie
s)

Edge Array Size (entries)

Figure 13: Effect of the local node size (left) and local edge array
size (right) on the maximum update buffer size

multiple kernel launches and data transfers. However, these primi-
tives are at the device level and only able to provide coarse granular
dependency management between host-initiated calls. Such con-
structs fail to address the data-dependency requirements across the
threads within the execution of a kernel.

A finer granular in-GPU synchronization across the TBs of a
kernel enables better utilization of SMs by allowing the dependen-
cies to be resolved locally. One of the major issues which is often
encountered in in-GPU synchronization is the deadlock problem
[36]. Consider a case where there are many thread blocks with a
global barrier, all parenting a single child kernel, as shown in Figure
2 (middle). If the number of thread blocks exceed the total number
of CTAs that can run concurrently on all the SMs, at a point some
thread blocks could be running on the SMs and hit the global barrier,
whereas the others have never been dispatched, and therefore cannot
context switch, causing the GPU to enter a deadlock state. In [36],
the deadlock is handled by using atomic operations and memory
flags. However, this situation will not occur in Wireframe due to
the absence of global barriers. A similar method is to transform
algorithms to remove global barriers, such as PeerWave [7]. How-
ever, this requires significant programming effort and is not general
purpose. However, all of these techniques are software-based and
result in significant run-time overhead.

Reducing Kernel Launch Overhead: In [33], authors proposed
a locality-aware thread block scheduler to schedule child nodes to
maximize cache locality within dynamic parallelism (CDP). How-
ever, the maximum recursion depth it can reach in any workload
is limited to 24 [1]. Wireframe, however, support more complex
parent-child relationships which are configurable by the user. This
makes the whole execution flow more manageable and efficient.

In [36], Xiao proposed an improvement of the subkernel launch
using GPU lock-based and lock-free synchronizations. In [10], G.
Chen et al. emphasize on re-using parent thread to operate on the data
to be processed by the child kernel. In [28], Tang et al. coordinates
dynamically-generated child kernels to reduce launch overheads
and schedules both parent and child kernels to improve launch over-
head hiding. In our work, we represent data dependencies through
DepLinks rather than implicitly through kernels or barriers, and
therefore completely avoid kernel launch overheads.

Dataflow Scheduling: In addition to the GPU-related work men-
tioned above, the problem that Wireframe targets has generally been
addressed in the architecture literature as “Dataflow scheduling”.
Etsion et al. [14] have developed a superscalar, out-of-order task
pipeline to execute dataflow programming models. Gupta et al. [18]
utilized run-times to exploit parallel dataflow execution out of serial

610

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Abdolrashidi et al.

programs on multicores. Wang et al. [32] have implemented a task-
level dataflow execution engine on FPGAs. More recently, Avron
et al. [4] studied hardware task scheduling performance on Plural
many-core-architecture. All these works present state-of-the-art ex-
amples for supporting data-flow based task execution on various
platforms, however none of them addresses the problem for GPUs.

Thread Block Scheduling: One of the works considering the
CTA behavior for the scheduling decisions is OWL [20], in which
the authors tackle the hardware under-utilization issue by prioritizing
certain thread block groups and improving the cache hit rates. To
the best of our knowledge, our scheduler is the first to target data-
dependent parallelism.

7 CONCLUSION
In this work, we propose a general-purpose data-dependent par-
allelism paradigm, Wireframe, which dramatically improves the
performance on GPGPU by eliminating the need for global barriers
and careful assignment of thread blocks as per the scheduling policy.
Wireframe has shown an average speedup of up to 45.07% across
multiple benchmarks.

ACKNOWLEDGMENT
This work is partly supported by NSF Grants CCF-1423108, CCF-
1513201. The authors would like to thank the anonymous reviewers
for their invaluable comments and suggestions.

REFERENCES
[1] 2012. Dynamic Parallelism in CUDA. http://developer.download.nvidia.com/

assets/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf. (2012).
[2] 2016. CUDA Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/. (2016). Accessed: 09-27-2016.
[3] 2017. CUDA 9 Features Revealed: Volta, Cooperative Groups and More. https:

//devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/. (2017).
[4] Itai Avron and Ran Ginosar. [n. d.]. Hardware Scheduler Performance on the

Plural Many-Core Architecture. In Proceedings of the 3rd International Workshop
on Many-core Embedded Systems (MES ’15). ACM, New York, NY, USA, 48–51.

[5] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
2009. Analyzing CUDA workloads using a detailed GPU simulator. In Perfor-
mance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. IEEE, 163–174.

[6] Mehmet E. Belviranli, Chih-Hsun Chou, Laxmi N Bhuyan, and Rajiv Gupta. 2014.
A paradigm shift in GP-GPU computing: task based execution of applications with
dynamic data dependencies. In Proceedings of the sixth international workshop
on Data intensive distributed computing. ACM, 29–34.

[7] Mehmet E. Belviranli, Peng Deng, Laxmi N. Bhuyan, Rajiv Gupta, and Qi Zhu.
2015. PeerWave: Exploiting Wavefront Parallelism on GPUs with Peer-SM
Synchronization. In Proceedings of the 29th ACM on International Conference on
Supercomputing (ICS ’15). ACM, New York, NY, USA, 25–35.

[8] Lars Bergstrom and John Reppy. 2012. Nested data-parallelism on the GPU. In
ACM SIGPLAN Notices, Vol. 47. ACM, 247–258.

[9] Berkin Bilgic, Berthold KP Horn, and Ichiro Masaki. 2010. Efficient integral
image computation on the GPU. In Intelligent Vehicles Symposium (IV), 2010
IEEE. IEEE, 528–533.

[10] Guoyang Chen and Xipeng Shen. 2015. Free launch: optimizing GPU dynamic
kernel launches through thread reuse. In Microarchitecture (MICRO), 2015 48th
Annual IEEE/ACM International Symposium on. IEEE, 407–419.

[11] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. 2010. Dy-
namic load balancing on single-and multi-GPU systems. In Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on. IEEE, 1–12.

[12] Peng Di, Hui Wu, Jingling Xue, Feng Wang, and Canqun Yang. 2012. Parallelizing
SOR for GPGPUs using alternate loop tiling. Parallel Comput. 38, 6 (2012), 310–
328.

[13] Izzat El Hajj et al. 2016. KLAP: Kernel Launch Aggregation and Promotion for
Optimizing Dynamic Parallelism. In MICRO’16.

[14] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M Badia,
Eduard Ayguade, Jesus Labarta, and Mateo Valero. 2010. Task superscalar: An

out-of-order task pipeline. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 89–100.

[15] Alcides Fonseca, Bruno Cabral, João Rafael, and Ivo Correia. 2016. Automatic
Parallelization: Executing Sequential Programs on a Task-Based Parallel Runtime.
International Journal of Parallel Programming 44, 6 (2016), 1337–1358.

[16] Priyanka Ghosh, Yonghong Yan, and Barbara Chapman. 2012. Support for
dependency driven executions among openmp tasks. IEEE.

[17] Priyanka Ghosh, Yonghong Yan, Deepak Eachempati, and Barbara Chapman.
2013. A prototype implementation of OpenMP task dependency support. In
International Workshop on OpenMP. Springer, 128–140.

[18] Gagan Gupta and Gurindar S Sohi. 2011. Dataflow execution of sequential
imperative programs on multicore architectures. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 59–70.

[19] Kshitij Gupta, Jeff A Stuart, and John D Owens. 2012. A study of persistent
threads style GPU programming for GPGPU workloads. In Innovative Parallel
Computing (InPar), 2012. IEEE, 1–14.

[20] Adwait Jog et al. 2013. OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance. In Proceedings of the 18th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’13). ACM, New York, NY, USA, 395–406.

[21] Leslie Lamport. 1974. The parallel execution of DO loops. Commun. ACM 17, 2
(1974), 83–93.

[22] Meinard Müller. 2007. Dynamic Time Warping. Springer Berlin Heidelberg,
69–84.

[23] Mahdieh Poostchi, Kannappan Palaniappan, Filiz Bunyak, Michela Becchi, and
Guna Seetharaman. 2012. Efficient GPU implementation of the integral histogram.
In Asian Conference on Computer Vision. Springer, 266–278.

[24] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. 2012. Cache-conscious
wavefront scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE Computer Society, 72–83.

[25] Jason Sanders and Edward Kandrot. 2010. CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional.

[26] Edans Flavius de O Sandes and Alba Cristina MA de Melo. 2013. Retrieving
smith-waterman alignments with optimizations for megabase biological sequences
using GPU. IEEE Transactions on Parallel and Distributed Systems 24, 5 (2013),
1009–1021.

[27] Maria A Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko
Bertogna, and Eduardo Quinones. 2015. Timing characterization of OpenMP4
tasking model. In Proceedings of the 2015 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems. IEEE Press, 157–166.

[28] Xulong Tang, Ashutosh Pattnaik, Huaipan Jiang, Onur Kayiran, Adwait Jog,
Sreepathi Pai, Mohamed Ibrahim, Mahmut T. Kandemir, and Chita R. Das. 2017.
Controlled Kernel Launch for Dynamic Parallelism in GPUs. In 2017 IEEE 23rd
International Symposium on High Performance Computer Architecture (HPCA).

[29] David Tarjan, Kevin Skadron, and Paulius Micikevicius. [n. d.]. The art of
performance tuning for CUDA and manycore architectures. ([n. d.]).

[30] Stanley Tzeng, Brandon Lloyd, and John D Owens. 2012. A GPU Task-Parallel
Model with Dependency Resolution. Computer 45, 8 (2012), 0034–41.

[31] Philippe Virouleau, Pierrick Brunet, François Broquedis, Nathalie Furmento,
Samuel Thibault, Olivier Aumage, and Thierry Gautier. 2014. Evaluation of
OpenMP dependent tasks with the KASTORS benchmark suite. In International
Workshop on OpenMP. Springer, 16–29.

[32] Chao Wang, Junneng Zhang, Xi Li, Aili Wang, and Xuehai Zhou. 2016. Hardware
Implementation on FPGA for Task-Level Parallel Dataflow Execution Engine.
IEEE Transactions on Parallel and Distributed Systems 27, 8 (2016), 2303–2315.

[33] Jin Wang et al. 2016. LaPerm: Locality Aware Scheduler for Dynamic Parallelism
on GPUs.. In International Symposium of Computer Architecture (ISCA).

[34] Jin Wang, Norm Rubin, Albert Sidelnik, and Sudhakar Yalamanchili. 2016. Dy-
namic thread block launch: A lightweight execution mechanism to support irreg-
ular applications on gpus. ACM SIGARCH Computer Architecture News 43, 3,
528–540.

[35] Michael Wolfe. 1986. Loops skewing: The wavefront method revisited. Interna-
tional Journal of Parallel Programming 15, 4 (1986), 279–293.

[36] Shucai Xiao and Wu-chun Feng. 2010. Inter-block GPU communication via fast
barrier synchronization. In Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. IEEE, 1–12.

[37] Shengen Yan, Guoping Long, and Yunquan Zhang. 2013. StreamScan: Fast Scan
Algorithms for GPUs Without Global Barrier Synchronization. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’13). ACM, New York, NY, USA, 229–238.

[38] Yi Yang and Huiyang Zhou. 2014. CUDA-NP: realizing nested thread-level
parallelism in GPGPU applications. In ACM SIGPLAN Notices, Vol. 49. ACM,
93–106.

611

http://developer.download.nvidia.com/assets/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf
http://developer.download.nvidia.com/assets/cuda/docs/TechBrief_Dynamic_Parallelism_in_CUDA_v2.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

	Abstract (26)
	1 Introduction (26)
	2 Motivation (1)
	2.1 Data-dependent Parallelism
	2.2 Barrier Synchronization Primitives

	3 Wireframe
	3.1 DepLinks API
	3.2 Dependency Graph Generation

	4 Dependency-Aware Thread Block Scheduler (DATS)
	4.1 GPGPU Architecture Overview
	4.2 Dependency Graph Buffer
	4.3 Level-bound Thread Block Scheduling

	5 Evaluation (4)
	5.1 Methodology
	5.2 Benchmarks
	5.3 Evaluation Results
	5.4 Overheads

	6 Related Work (4)
	7 Conclusion (4)
	References (27)

