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ABSTRACT
Nested loops with regular iteration dependencies span a large
class of applications ranging from string matching to linear
system solvers. Wavefront parallelism is a well-known tech-
nique to enable concurrent processing of such applications
and is widely being used on GPUs to benefit from their mas-
sively parallel computing capabilities. Wavefront parallelism
on GPUs uses global barriers between processing of tiles to
enforce data dependencies. However, such diagonal-wide syn-
chronization causes load imbalance by forcing SMs to wait for
the completion of the SM with longest computation. Moreover,
diagonal processing causes loss of locality due to elements
that border adjacent tiles.

In this paper, we propose PeerWave, an alternative GPU
wavefront parallelization technique that improves inter-SM
load balance by using peer-wise synchronization between SMs.
and eliminating global synchronization. Our approach also
increases GPU L2 cache locality through row allocation of
tiles to the SMs. We further improve PeerWave performance
by using flexible hyper-tiles that reduce inter-SM wait time
while maximizing intra-SM utilization. We develop an analyt-
ical model for determining the optimal tile size. Finally, we
present a run-time and a CUDA based API to allow users
to easily implement their applications using PeerWave. We
evaluate PeerWave on the NVIDIA K40c GPU using 6 differ-
ent applications and achieve speedups of up to 2X compared
to the most recent hyperplane transformation based GPU
implementation.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; C.1.2 [Processor Architec-
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tures]: Multiple Data Stream Architectures (Multiproces-
sors)—Single-instruction-stream, multiple-data-stream proces-
sors (SIMD)

General Terms
Algorithms

Keywords
Wavefront parallelism; GP-GPU computing; decentralized
synchronization.

1. INTRODUCTION
Since nested loops are a major source of parallelism, a

great deal of research has focused on parallel execution of
nested loops. Many classes of applications like time-based
simulations, linear system solvers, and string matching algo-
rithms employ a combination of DOACROSS and DOALL
parallelism to process large volumes of data efficiently on mas-
sively parallel systems. Application and architecture specific
challenges imposed by the data dependencies between loop
iterations have lead to the development of various compile-
time [5, 11], run-time[2, 12, 9], and algorithm-level [15, 3, 13]
solutions.

Wavefront parallelism [16] is a well known technique for ex-
ploiting parallelism in nested loops using multiple processing
units. Based on the dependency relationships across itera-
tions along space and/or time dimensions, the computation
proceeds in form of diagonal waves where iterations in each
wave can be executed in parallel. To enforce data dependen-
cies across consecutive waves, their execution is serialized
via the use of barriers. To exploit data locality, elements are
grouped into square tiles [17] and each tile is assigned to a
single processor. This approach introduces a second level of
parallelism where tiles can also be processed in parallel along
diagonal waves with global barriers separating them.

GPUs have been used to accelerate wavefront based appli-
cations via use of their massive number of processing units.
Many frequently used algorithms such as Smith-Waterman
[14, 18], Cholesky Factorization [15], and SOR loop nests [4]
have been adapted to run efficiently on GPUs. The two level
parallelism via tile partitioning is also commonly exploited by
GPU based techniques whose evaluation has been reported in
several studies [5, 4, 18]. In these approaches, a thread block
(TB) is created for each tiles in a diagonal and these tiles
are processed in parallel by the multiple streaming multipro-
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cessors (SMs) of the GPU (inter-tile parallelism). Iterations
along diagonals within a tile are also executed in parallel by
the SIMD computation units (i.e. CUDA cores) inside an
SM (intra-tile parallelism). Similar to CPU based approaches,
global barriers are required for both tile-level (i.e. inter-tile)
and element-level(i.e. intra-tile) diagonals in order to enforce
data dependencies. However, on GPUs, using global barriers
for 2-level tiled wavefront execution has two major drawbacks:

1. Low utilization due to load imbalance. The use of
global barriers leads to low utilization of processing units
during both intra- and inter-tile parallel execution. The intra-
tile imbalance causes threads utilization to be lower towards
the beginning and the end of diagonal iterations. The same
thing happens in processing diagonals of tiles, where the
number of tiles are less at the beginning and towards the end.
Moreover, inter-tile processing is also imbalanced, when other
processors wait for the longest running task (i.e., processing of
a tile) in a diagonal. SMs are forced to stay idle, even though
new tiles are ready to execute as their dependencies have been
satisfied. Intra-tile load imbalance for GPUs is addressed in
[5] where tiles are transformed into polyhedral planes [8] to
maximize utilization of threads processing a tile. However,
this approach still uses inter-tile global barriers causing some
SMs to unnecessarily wait for the longest running task.

2. Loss of data locality across tiles is another cause of
performance degradation in global barriers. In CUDA, thread
blocks, hence tiles, are executed in no specific order; therefore
there is no guarantee that neighboring tiles will be processed
by the same SM. This behavior destroys the dependency-
implied locality across the border elements of adjacent tiles.
Efforts have been made to overcome this drawback of global
barriers. To improve data locality, [10] statically assigns row
of tiles to the same processor and for shared memory multi-
processors large CPU caches significantly improve data reuse
between neighboring tiles. However, intra-tile operations are
still carried out on a diagonal basis, which constitute most of
the computations. In contrast to CPUs, both intra-tile and
inter-tile locality is not exploited on GPUs since L1/L2 caches
are much smaller. The effects of row or column assignments
of tiles on GPU execution has not been tried before.

In this paper we address the above issues by developing
PeerWave, a new GPU parallelization scheme for nested loops
with data dependencies. We develop a decentralized synchro-
nization scheme called PeerSM which eliminates global barri-
ers by utilizing efficient SM-to-SM communication. PeerSM
considerably reduces load imbalance by decreasing redundant
idle waits and letting SMs start executing tiles independently
as soon as their dependencies are satisfied. Our approach
also improves cache locality across consecutive tiles by Row-
to-SM assignment. Flexible Hyper-Tiles further reduces SM
under utilization by allowing fine-grained control over syn-
chronization intervals while keeping intra-tile utilization at
maximum.

Our paper has the following contributions:

• We design a fast SM-to-SM peer synchronization mech-
anism (PeerSM ) to eliminate load imbalance between
SMs.
• We implement a row allocation scheme (Row-to-SM )

which assigns consecutive tiles to same SM via program-
ming of thread blocks (TBs).
• We extend hyperplane tile transformation (hyper-tile)

(Flexible Hyper-Tiles) to further decrease idleness via
adjustable synchronization intervals .

• We evaluate our scheme on the state of the art NVIDIA
K40c GPU for 6 different applications and achieve
speedup of up to 2X compared to approach that uses
global barriers and hyper-tiles.
• We develop a generic API for CUDA to support a wide

class of applications with nested loops and regular de-
pendencies.

The rest of this paper is organized as follows. In Section
2, we give background on wavefront parallelism and related
techniques. In Section 3 we describe our scheme in detail and
in Section 4&5 we elaborate on the details, optimizations, our
run-time and API. In Section 6 we describe the applications
we use and in Section 7, we present the evaluation of our
scheme. We end the paper with discussion of related work
and the conclusion.

2. WAVEFRONT PARALLELISM
The wavefront technique exploits parallelism in nested loops

that contain regular data dependencies across loop iterations.
The main idea is to skew the iteration space and re-order
loops to obtain a DOALL parallelism in one of the loops [16].
An example loop nest that processes a 2D array with cross
iteration dependencies is given in Algorithm 1. The original
loop nest is serial, and by skewing the inner j loop, DOALL
parallelism is obtained across the iterations of the outer i
loop. To utilize this parallelism, the two loops are swapped
and their boundaries are adjusted accordingly. Figure 1(a)
illustrates the iterations of this skewed&swapped loop nest.
The dependencies between elements are shown via arrows
and diagonals of elements are marked with dashed lines. Each
diagonal corresponds to an iteration of the outer j loop that
can be executed in parallel. An important property of such
parallelism is its non-uniformity, where the parallelism first
increases and then decreases along the outer diagonal iteration
space.

Algorithm 1 Wavefront execution via loop skewing

// Original loop nest
for i=2 to n do

for j=2 to m do
A[i, j] = (A[i− 1, j] +A[i, j − 1])/2

end for
end for

// Skewed
for i=2 to n do

for j=i+ 2 to i+m do
A[i, j − i] = (A[i− 1, j − i] +A[i, j − i− 1])/2

end for
end for

// Skewed & Swapped
for j=4 to n+m do

for i=MAX(2, j −m+ 2) to MIN(n, j − 2) do
A[i, j − i] = (A[i− 1, j − i] +A[i, j − i− 1])/2

end for
end for

Tiling. In wavefront parallelism the control over granularity
and locality is achieved by partitioning the iteration space
into t× t square regions called tiles (see Figure 1(b)). Typ-
ically, tiling decreases inter-processor communication and
also increases cache locality by grouping elements. Similar to
the element-wise diagonal pattern, streaming multiprocessors
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Figure 1: On the left(a), basic wavefront parallelism where dashed lines corresponds to ‘waves’. In the cen-
ter(b), tiling enables a second level of parallelism. On the right (c) tiles are transformed by the hyperplane
technique.

(SMs) can be used to process diagonals of tiles in parallel
(inter-tile parallelism) while diagonal elements in each tile
can also be processed in parallel (intra-tile parallelism) by
SIMD compute units (CUDA cores).

Even though GPUs enable 2-level parallelism, increased
memory distance between neighboring diagonal executions
combined with smaller cache sizes in GPUs reduces the possi-
bility of cache hits and dramatically increases un-coalesced
memory accesses. Moreover, due to the SIMD nature of
GPGPU programming, any thread block (TB), hence a tile,
can be executed on any SM, therefore voiding any possible
spatial locality between neighboring tiles belonging to succes-
sive diagonals. The locality between two neighboring tiles in
the same row is also lost because the data corresponding to
only the last few diagonals is available in the cache. Hence
straightforward allocation of two neighboring tiles to the same
SM may not also benefit locality on GPUs. What we really
need is the bordering data of a tile to be passed on to the
same SM.

Hyperplane Transformation. An inherent drawback of us-
ing square/rectangular tiles in wavefront parallelism is the
non-uniform diagonal sizes encountered during the execution
of a tile. Hyperplane partitioning [8] converts square tiles into
polyhedral quadrilaterals via a series of affine transformations.
As shown in Figure 1(c), resulting tiles are composed of equal-
sized diagonals with a total count of n, for n x n tiles whereas
the square tiles end up in 2n− 1 diagonal iterations. Unlike
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Figure 2: SM Under-utilization: On the left in (a)
tiles are numbered with SMs executing them using
global barriers; (b) shows the execution time-line of
each SM using global barriers where dark-black slots
indicate idle times; and (c) shows the ideal execution
with the idle slots are eliminated.

square tiles, which limit maximum intra-tile parallelism to the
minimum of tile width and height, hyper-plane partitioning
allows arbitrary tile widths while keeping the diagonal size
equal to the tile height. It may also be observed that the
data is passed directly from the elements of a diagonal to be
executed in the next iteration, hence increasing cache hits
in the SM even for small cache sizes. If we allocate the next
tile in the same row to the same SM, there will be cache
hits for the bordering data. A technique similar to hyper-
plane partitioning for GPUs was proposed by [5] via compiler
transformations to improve intra-tile parallelism. However,
aforementioned inter-tile benefits have not been previously
explored.

Load Imbalance. The main drawback of using global barri-
ers is the load imbalance caused by the diagonal-wide inter-tile
synchronization. The imbalance is caused due to the varying
number of tiles in each diagonal and the count is not always
a multiple of an integer, hence all SMs need to wait until
the SMs with the highest number of assigned tiles finish. We
present an example in Figure 2 that shows the execution time
line of a wavefront parallelism to demonstrate the load imbal-
ance caused by global barriers. Figure 2(a) shows a 2D data
partitioned into 8 tiles in each dimension and executed on 4
SMs using global barriers. Tiles in a diagonal are shaded with
same color and numbered with the SM ids that are assigned
to execute them. The scheduling is assumed to be the default
round-robin TB scheduler believed to be used by NVIDIA
GPUs. Figure 2(b) shows the time line for each SM where
shaded rectangles correspond to busy time and dark-black
slots correspond to idleness. Due to varying length of tile
diagonals, some SMs are left idle for nearly all the diagonals.
Figure 2(c) shows the ideal execution if global barriers are
removed and SMs synchronize directly with each other to
enforce dependencies. As we can see, the idleness due to inter-
tile load imbalance is completely removed. Theoretically the
saved time can be as high as 25% based on the total tile and
SM count.

idle(d, p) =

{
p− |d|modp, if |d| > p

0, otherwise

nidle =

tx+ty−1∑
d=1

idle(d, p)
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Figure 3: Number of idle tile execution slots on the
left(a) and the ratio of idle slots to total tiles on the
right(b).
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The number of idle tile execution slots can be expressed
with the equation given in Figure 3(a), where p is the number
of processors and d is the diagonal iteration index. Using
this equation, we have plotted the ratio of idle tile slots to
the total tile count, which increases as smaller tiles are being
used. As shown in Figure 3(b), even using smaller tiles to
increase total tile count does not help this imbalance to be
eliminated.

The rest of the paper describes PeerWave that provides the
ideal execution of the rightmost Figure 2(c).

3. PEERWAVE
We propose PeerWave to employ direct SM-to-SM syn-

chronization instead of global synchronization for wavefront
parallelism to address the above drawbacks. As shown in
Figure 4, PeerWave assigns a row of tiles to an SM to improve
inter-tile locality and it uses decentralized synchronization
to avoid barriers and load imbalance, where synchronization
points are appropriately placed to maximize performance.
Light triangles on the bottom-right of each tile correspond to
the points where an SM writes to neighboring SM’s flags after
it finishes processing the tile; dark triangles on top-left of the
tiles are for the places where a dependent SM reads these
flags to continue execution. The rest of this section describes
PeerWave in detail.

SM 0

SM 1

SM 2

j = 0  

N

Figure 4: PeerWave: Partitioning of 2D iteration
space into rows of tiles and assignment of rows
to SMs. Triangles correspond to synchronization
points, (light=write, dark=read).

3.1 Row-to-SM Assignment
PeerWave assigns a tile-row, a complete horizontal row

of tiles in the 2D iteration space, to a single SM to exploit
locality across tiles. In case there are more rows than SMs, the
rows are distributed among the SMs in a round-robin fashion.
Since CUDA does not provide any native mechanisms to
manually assign thread blocks (TBs) to SMs, a TB is created
for each row and the TB-to-SM affinity is achieved by limiting
total number of TBs in a kernel launch to total number of
SMs.

Row-to-SM assignment exploits locality by allowing ele-
ments close the horizontal border between tiles to remain in
caches or local memory until they are accessed again. When
combined with hyper-tiling, tile-rows further increase reuse
across multiple columns with more hits on the last level cache.
Moreover, this approach allows uninterrupted processing of
elements across different tiles and enables two further opti-

mizations, use of shared memory diagonal buffers and hybrid
row-diagonal data storage (described in Subsection 3.4).

Algorithm 2 PeerWave main loop

1: for every row r assigned to SM i do
2: for every tile t in row r do
3: wait until flag[t, i] = 1
4: process tile(t, r, i) . SIMD
5: flag[t, i+ 1]← 1
6: end for
7: end for

Algorithm 2 shows how each SM processes its tile-rows.
The outer loop iterates over the rows assigned to an SM in a
round-robin fashion whereas the inner loop processes the tiles
in a given row in sequence. Each SM processes its tiles one at a
time while performing the major computation, i.e. processing
of a tile, in parallel using SIMD computation units. In the
inner loop, right before and after processing of a tile, the SM
communicates with its neighboring SMs, called Peer-SM s, to
enforce the dependencies between the tiles in adjacent rows.

3.2 Peer-SM Synchronization
Peer-SM synchronization is the key component of our

method that replaces the global barrier synchronization be-
tween diagonal tiles with distributed synchronization among
neighboring tiles. The decentralized nature of Peer-SM allows
SMs within a GPU to work independently through synchro-
nization points similar to CPU multithreading. Each SM
processes the tiles in its row in dependence order and commu-
nicates with the SMs assigned to preceding and succeeding
rows before and after processing each tile. By avoiding the
redundant waits on global barriers and relying only on direct
communication between neighboring SMs, Peer-SM improves
load balance.

We implement inter-SM communication by using one-way
flags located in the GPU global memory. Each SM owns
a dedicated array of these flags corresponding to the tiles
assigned to it. The one-way communication pattern is realized
in PeerWave by having an SM read flags only from the prior
row and write only to the flags for the succeeding row. Unlike
the previous global-barrier based approaches, this one-way
communication removes the need for atomic operations and
locks, and scales well with increasing number of SMs.

When an SM is ready to process a tile, it continuously polls
the corresponding flag, and begins processing once the flag is
set to 1. After the SM has finished processing the tile, it sets
the flag for the tile in the next SM’s row that is waiting on
the current tile, and then becomes ready to process the next
tile in the row. When there are more rows than the number
of SMs, and multiple rows are assigned to the SM, the SM
resets all synchronization flags and starts processing next row
immediately after the last tile of the current row has been
completed. Per-SM flag arrays are created only once and then
reused as the SM moves from one row to its next assigned
row. Implementation details of Peer-SM synchronization are
given in Section 5.

3.3 Flexible Hyper-Tiles
While tile-row assignment and peer-SM synchronization

improve inter-SM load balancing with better data locality, fur-
ther speedup can be achieved during intra-SM computation.
Rectangular tiles result in shorter diagonals at the beginning
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Figure 5: Intra-tile thread utilization is demon-
strated for rectangular tiles on the left(a) and for
hyperplane transformed tiles on the right(b)

and ending iterations within a tile and this partitioning leaves
many threads (hence CUDA cores) in a TB idle. Hyperplane
tile transformation improves SM utilization by maintaining
a uniform diagonal size across the entire tile and thus maxi-
mizing the throughput. The number of iterations needed for
intra-tile computation for square and hyperplane tiles are
shown in Figure 5(a) and (b), respectively. The hyperplane
tile partitioning decreases total number iterations from 2n− 1
to n in comparison to rectangular tiles. Thus, PeerWave uses
hyperplane tiles (hyper-tiles) in addition to row-SM allocation
and peer-SM synchronization. Each element in a diagonal is
mapped to a thread in the TB and we iterate over diagonals
until the end of the tile where inter-SM synchronization point
is located. Figure 6(a) shows transformed tiles along with the
synchronization points. Skewed indices change total number
of tiles and shift the locations of inter-SM synchronization
points. It should be noted that while [5] uses compiler level
hyperplane loop transformations, unlike PeerWave, it still
uses global barriers between diagonals.

Figure 6: Hyper-Tiles on the left (a) and Flexible
HT with variable synchronization intervals on the
right (b)

We present Flexible Hyper-Tiles (FHT), an improved hy-
perplane transformation technique which allows us to find
and utilize the optimum tile widths without changing the
tile heights. Unlike the naive hyper-tiles approach with equal
dimensions, FHT enables fine granular tile width adjustment
for better control over the frequency of synchronization while
maximizing intra-SM utilization without requiring tile heights
to be changed. Smaller synchronization intervals decrease the
time SMs must wait before processing their rows during the
initial and final phases of execution when the parallelism is
limited. Figure 6(b) shows an example of tile resizing where

SM 1 can start processing tile (i=1,j=0) as soon as the diago-
nal corresponding to the element (i=0,j=2) has been processed
by SM 0.

Different from prior studies, Flexible Hyper-Tiles uniquely
models the optimal synchronization intervals (i.e. tile width)
and finds the best trade-off between decreased load imbalance
and increased synchronization cost. Optimal intervals are
application and device specific and we develop an analytical
model that outputs best tile width for given application/device
characteristics. PeerWave runtime auto-adjusts the synchro-
nization points based on the optimal tile width obtained from
this model. Derivation of the model is presented in Section 4.

3.4 Optimizations
We further improve performance of PeerWave by employing

the following optimizations.
Shared memory diagonal buffers: An important fea-

ture of PeerWave is its uninterrupted sequential processing of
tiles within a row on the same SM. This enables efficient use
of SM shared memory between consecutive iterations of tiles
to dramatically reduce global memory accesses. Since pro-
cessing a diagonal requires access to elements from preceding
and succeeding diagonals, corresponding data can be stored
in a sliding window of diagonal buffers that eliminates repeti-
tive accesses to global memory as the diagonals are iterated
upon by the same SM. When a diagonal is no longer to be
accessed, it is written back to the device memory. The size of
the sliding window is dependent on the length of the longest
dependency vector in the transformed iteration space. FHT
greatly increases the efficiency of diagonal buffers by combin-
ing accesses to partial diagonals, which are located towards
the edges of neighboring tiles, into consecutively accessed ‘full’
diagonals.

Hybrid row/diagonal-major data layout: The diago-
nal access pattern during intra-tile processing requires CUDA
cores inside SM to access non-consequent locations in the
memory. This pattern results in highly un-coalesced memory
accesses and causes significant slow down due to excessive
number of memory transactions. Diagonal-major data repre-
sentation [2] improves coalescing by storing elements in the
same diagonal in consecutive memory locations. However, this
approach does not preserve inter-tile locality, and causes the
border elements to be redundantly being read and written
as the processing of diagonals in one tile finishes and the
next one begins. To prevent this behavior, we use a hybrid
approach where the tiles in a row are continuously placed in
the global memory in row-major order while the elements in
the same diagonal are placed in diagonal-major order. The
hybrid row-diagonal major data layout does not cause any
memory space to be wasted since all diagonals in hyper-tiles
have the same length.

The change in storage format requires the host data to be
initialized properly. This can be done in two ways: (1) The
data is converted to/from hybrid layout before and after GPU
memory transfers. (2) When initializing the data from I/O
resources or dynamically, the index transformation can be
performed on the fly. The former method requires additional
host-to-host data copy operations, therefore can be costly.
The latter solution eliminates redundant copies and requires
only a few additional instructions per index, whose cost are
already hidden by much longer I/O instructions. We provide
a simple API, whose details are given in the next section, to
translate given x, y coordinates to proper data indices.
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4. FINDING OPTIMAL TILE WIDTH
Next we develop an analytical model for finding the optimal

tile width that will be utilized by Flexible Hyper-Tiles(FHT)
to minimize the total execution time, which is a function of
diagonal execution time and peer-SM synchronization cost.
We compute the total execution time by identifying the critical
path, i.e. the longest path through the execution. The output
of our model is the optimal tile width for use in the runtime
developed later.

Symbol Definition

P Number of SMs

W / H 2D input data width / height

wt / ht Tile width / height

d Diagonal execution time (measured)

τs Peer synchronization cost (measured)

τe Tile execution time

Table 1: The notation used by our model

The notation used in the derivation of the model is given
in Table 2. We assume that the input is a 2D data matrix
with height H and width W . The matrix is partitioned into
H/ht tile rows and P SMs are assigned to these rows in a
round-robin fashion. The constants τs and d represent peer
synchronization cost and the processing time of each intra-tile
diagonal, respectively. These parameters are obtained using
the findOptimumTileWidth() function which is provided by
our API and performs an offline run on a small fraction of
the input data to measure these parameters. Tile execution
time τe is derived as a function of d, where:

τe = wtd (1)

We define B to represent the time during which the pro-
cessing of a row assigned to the first SM is blocked by the
execution of the previous row assigned to the same SM. This
case happens when there are fewer SMs than the number of
tile columns. B is defined as follows:

B =
W + ht

wt
(τe + τs)− P (τe + τs) (2)

The critical path consists of processing the first two tiles of
every row and all the tiles in the last row. The point where
blocking (B) occurs, marked by a dashed arrow, is where the
first SM finishes processing the last tile in a row and starts
the first tile in its next assigned row. Hyperplane partitioning
introduces an extra tile at the beginning of each row as there
is no tile on which the first tile in a row is dependent.

Using equations 1 and 2, we can formulate the critical path,
hence the total execution time, as follows:

Ttotal =
H

ht
(
ht

wt
+ 1)(τe + τs) +B(

H

htP
− 1)

+ (
W

wt
− 1)(τe + τs)

(3)

According to Equation 1, enlarging ht is always beneficial as
this will lead to better intra-tile utilization and tile execution
time will not increase because τe is invariant w.r.t ht. On the
other hand, any values wt, s.t. ht ≥ wt, will not change tile
execution time. However, by analyzing equation 3 (details
omitted), it can be shown that total execution time decreases
as ht increases. Thus, using maximum ht (i.e., maximum
number of threads per intra-tile diagonal) for hyper-tiles will

always give best performance. With fixed ht, total execution
time becomes a function of wt, the synchronization interval.

Equation 3 can be transformed into the form awt +b/wt +c,
where the optimal wt that minimizes the equation is given
by

√
b/a. Hence, the optimal synchronization interval based

on the model is given by:

wt =

√
τs(HW +Hht +HhtP − h2

tP )

dhtP (P − 1)
(4)

We use equation 4 to find the optimal synchronization
interval without the need for running the application on
the entire input data. We validate the above model in the
Evaluation Section.

5. RUNTIME & API
We develop a runtime to handle inter-SM synchronization

and an easy to use API for users to implement wavefront
applications.

PeerWave runtime employs a multi-core like execution
scheme with each SM acting as an independent SIMD-capable
processor. It uses persistent TBs each of which runs until
all corresponding tiles are processed. The run-time kernel
is launched with TB count set equal to the total number of
physical SMs in the GPU. The default NVIDIA TB scheduler
assigns each SM in a round robin fashion, and the number
of TBs per SM is determined by the resource requirements
of the kernel. For this reason, in our runtime, we use large
enough TBs (hence tiles) so that HW scheduler only assigns
one TB per SM. A major benefit of having persistent TBs is
that SMs can preserve execution state in their local memory
(e.g., shared memory in CUDA) and also retain application
data across iterations.

struct user_data{float* data; long w; long h;
int** dependencyVectors ;}

void transformIndex(int& x, int& y, int& index ,
int tile_w , int tile_h , user_data udata);

long findOptimumTileWidth(user_data udata ,
int tile_h ,int nSM ,float trainingRatio);

__global__ void PeerWaveKernel(user_data udata ,
int tile_w , int tile_h , int nSM , int* flags);

Listing 1: PeerWave kernel header and other helper
functions

PeerWave runtime consists of a user-modifiable data struc-
ture, preparation functions, a main runtime kernel, and peer-
SM communication functions called by this kernel. The head-
ers for these components are given in Listing 1 and the details
are elaborated in the rest of this section.

User data: user data struct contains device memory pointer
to the user data, dimensions of the 2D data space and the
dependencyVectors for the stencil computation. Users are
responsible for initializing the device memory via cudaMal-
loc() calls and copy initial data from host memory to GPU
via cudaMemcpy(). user data struct can be modified to add
application specific pointers and parameters.

Preparation functions: We present users two optional
pre-runtime functions to increase the usability of our frame-
work. The first one is the index transformation function,
transformIndex(), to allow users a convenient two-way index
translation from/to 2D x and y coordinates to/from a data
index. The function uses the application parameters given in
user data and performs the transformation to support our
row/diagonal major hybrid data layout. The second function
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is findOptimumTileWidth() and it is used to find optimum
tile width via the provided model. The function finds applica-
tionarchitecture specific parameters required by the analytical
model by performing an offline training run on a fraction of
the input data specified by the trainingRatio parameter.

PeerWave Kernel: PeerWave runtime, hence the user
algorithm, is initiated by launching this kernel with the fol-
lowing parameters:

• TB Size & Grid Size: These two parameters are supplied
to CUDA runtime while launching the kernel. The grid
size (i.e., the number of TBs) is set equal to the number
of SMs (nSM ) whereas TB Size is application and archi-
tecture specific and the programmer need to determine
the optimal size according to resource requirements of
the wavefront application.
• nSM : GPU specific value denoting the total number of

SMs.
• Flags: The communication flags which need to be pre-

allocated on GPU memory via provided init() function.
The size of this array is dependent on the number of
SMs and the number of tiles in a row.
• tile h: Height of the tiles. Since PeerWave maps each

element in the vertical axis of a tile to a thread in the
TB, tile height should be equal to the TB Size (i.e.
number of threads) specified during kernel launch.
• tile w : Width of the tiles (i.e. synchronization interval).

As discussed in Section 3 and 4, tile width determines
the synchronization interval and it is an important pa-
rameter that directly affects the performance. Users
can either manually derive the optimal tile width using
Equation 4 derived in Section 4 or use transformIndex()
as described above.

flagRead (){
if (threadIdx.x==0){ // Single thread only

// check tile flag until set
while(flags[( nTiles_x)*smID+j]==0)

cosineSleep (); // dummy computation
flags[( nTiles_x)*smID+j]=0;} // reset for

future
syncthreads (); // sync with other threads}

flagWrite (){
if (threadIdx.x==0){ // Single thread only

int nextSM = (smID +1)\%nSM;
// Set flags for next row.
flags[( nTiles_x)*nextSM+j]=1;}

syncthreads ();} // sync with other threads

Listing 2: Implementation of flag read (a) and write
(b) operations

Once the PeerWaveKernel is launched, PeerWave main
loop given in 2 is executed by each SM until all the data is
processed. The main loop involves read of synchronization
flags, processing of the tile and writing back to the flags.

Flag Read: PeerWave relies on efficient synchronization
of SMs via one-way communication flags. Listing 2(a) shows
the code used to ensure that the corresponding flag is set (i.e.,
dependencies are met) before every SM starts processing a new
tile. Since NVIDIA does not provide an efficient means of inter-
SM communication, we keep polling the flag corresponding to
the executing SM (smID) and the current column (j) in the
tile row until its value is 1. We decrease potential memory
contention by idling the SM for a small short period of time
using cosineSleep() function derived from repetitive calls to

cosine function. When the flag is detected as set, we reset it
for future use and move on to tile processing.

Tile Processing: Each SM processes the elements in the
same diagonal in parallel using the threads in the TB. Each
row of elements is mapped to a single thread and the number
of columns in the tile correspond to the number of diagonals.
After processing of each diagonal, threads inside the SM
synchronize using cudaThreadSync() method, which is an
efficient intra-SM HW barrier implementation provided by
CUDA.

Flag Write: Once a tile is processed, SMs need to set the
flag for the next SM (smID+1) in the same column (j) as well
as the tile in the next column(j+1) in the same row, as shown
in Listing 2(b). Border conditions are omitted for simplicity.
The overhead of both flag read/write operations are measured
to be minimal and reported in the evaluation section.

Element Processing: PeerWave enables users to imple-
ment their core computation by overriding the compute element()
function as given in Listing 3. The Listing shows an example
overriding of compute element() function to implement the
core computation of Smith-Waterman algorithm. During tile
processing, runtime performs hyper-plane transformations on
border elements of each tile and calls user function with the
base tile index as well as the element’s global x/y coordinates.
u data.seq1 and u data.seq2 are the two input data sequences
added to the user data struct and the u data.data array cor-
responds to the intermediate 2D computation matrix used
while calculating the similarity between the two sequences.
compute element() function is run in SIMD fashion where
all threads in the TB are called with corresponding x and y
coordinates of the elements that they are mapped to.

__device__ void compute_element(
const struct user_data u_data ,
int tileRow , int tileColumn ,
int tile_w , int tile_h ,
int x, int y, int index , int nTiles){

int upleft ,left ,up;
if (u_data.seq2[y] != u_data.seq1[x])

upleft = u_data.data[index -2* tile_height -1]-1;
else

upleft = u_data.data[index -2* tile_height -1]+2;
left = u_data.data[index+tile_height ]-1;
up = u_data.data[index -tile_height -1]-1;

int max = MAX(0,MAX(upleft , MAX(left , up)));
udata.data[index] = max;}

Listing 3: An example override of compute element()
function.

6. WAVEFRONT APPLICATIONS
We evaluate PeerWave using 6 different wavefront paral-

lelizable applications.
Heat 2D simulates dissipation of heat over a two dimen-

sional surface during a specific time frame. During each simu-
lation step, the algorithm calculates the heat of every point
in the 2D surface by averaging the heats of its neighboring
elements. The calculation relies on the values calculated in
current and previous simulation step as follows:

A[i, j] = (A[i− 1, j]+A[i, j − 1]+A[i+ 1, j]”+A[i, j + 1]”)/4

SOR loops are generalized form of time based stencil com-
putations on neighboring elements. We have considered a
2-dimensional SOR loop iteration with 5-point stencil which
is similar to Heat2D but with including the self element in
the average as well. The core computation is as the following:

31



A[i, j] = (A[i− 1, j]+A[i, j − 1]+A[i, j]”
+A[i+ 1, j]”+A[i, j + 1]”)/5

Smith Waterman (SW) is a well known algorithm used
for local sequence alignment. It takes two sequences as inputs
and builds a matrix to mark and extract matching patterns.
The algorithm steps backwards by one position in the three
directions (i-1,j), (i, j-1), and (i-1, j-1). The related compu-
tation is shown below, where w is the penalty function that
returns 2 on equality and -1 otherwise:

A[i, j] =MAX(A[i−1, j]−1,A[i, j−1]−1,A[i, j+1]+w(i, j))

Dynamic Time Warping (DTW) is used to find an
optimal match between two given sequences (e.g., time series).
The series are ”warped” in the time dimension to find a
measure of their similarity without relying on certain non-
linear variations in the time dimension. The pseudo code
showing cost calculation across neighbors is as the following:

A[i, j] = |i− j|+MIN(A[i− 1, j]+A[i, j − 1]+A[i− 1, j − 1])

Summed Area Table (SAT), also known as integral image,
is used for generating the sum of values in a rectangular subset
of grid. Summed area table can be computed efficiently in a
single pass over the image using the equation below:

A[i, j] = w(i, j)+A[i− 1, j]+A[i, j − 1]−A[i− 1, j − 1])

Integral Histogram (INT), is another popular image pro-
cessing algorithm to calculate histogram of a given bitmap.
Different from SAT, it reads from the original image (i.e.
bin) but writes into a separate data location used to store
corresponding histogram as shown in the algorithm below:

A[i, j] =B[i, j]+A[i− 1, j]+A[i, j − 1]−A[i− 1, j − 1])

The dependencies required by above applications are illus-
trated in Figure 7. As shown on the left hand side of the
figure, Heat2D and SOR computation on each element (i,j)
depends on the top (i,j-1) and left (i-1,j) elements which are
calculated in the previous wave, as well as bottom (i,j+1)
and right (i+1,j) elements that are calculated in the previous
time step (denoted with ”) of the algorithm. Other four algo-
rithms, SW, SAR, DTW and INT, have similar dependencies.
Different from Heat2D and SOR, their computation also relies
on the top-left element (i-1,j-1).

Figure 7: Computation dependencies required by
Heat2D, 2D-SOR, SW, DTW, SAT and INT.

7. EVALUATION
In this section we first describe the details of our experi-

mental setup and then present the experimental results.

Architecture. We evaluate PeerWave on NVIDIA’s Tesla
K40c series GPU attached to an AMD Opteron 6100 based
system. The GPU has 15 SMX units each having 192 CUDA
cores accessing 12GB of global DDR3 memory. K40c has a
shared L2 cache size of 1.5MB and shared memory of each
SMX is configured to use 16KB/48KB L1 Cache/Shared
with global memory requests are not set to be cached on L1
(Kepler’s default setting).

Methodology. In our evaluation, we only measure GPU
kernel computation times only because our proposed technique
focuses on kernel execution to improve overall execution.
For all experiments, we use hybrid row/diagonal major data
layout with on-the-fly index transformation as described in
Section 3. Since data initialization and transfer times are
observed to be similar w/ and w/o the hybrid layout, we
exclude all host related operations (initialization and transfers)
from our experiments to demonstrate the efficiency of our
technique in more detail. Overlapping of data transfers and
kernel computations for further speedup is orthogonal to our
proposed method and not covered in this paper.

In all of our experiments, we fix the data size to the highest
amount that fits in GPU’s global memory, and set the tile
height and TB size to 1024 (unless specified otherwise in
the experiment). For optimal performance, we implement
global barriers by using NVIDIA Kepler’s dynamic parallelism
that allows in-GPU cudaDeviceSync() calls. We compare the
following wavefront execution methods:

1. Global barriers: The baseline global synchronization
approach using square tiles.

2. PeerWave: Basic implementation of our proposed peer-
SM synchronization based technique using square tiles.

3. Global barriers w/ HTiles: Global synchronization ap-
proach using hyperplane transformed tiles with equal
dimensions.

4. PeerWave w/ HTiles: Improved version of PeerWave
using hyper-tiles with equal tile dimensions.

5. PeerWave w/ Flexible HTiles: Optimized version of
PeerWave hyper-tiles with flexible non-equal tile dimen-
sions.

7.1 Execution Time: Equal Tile Dimensions
We first evaluate the performance of the first four techniques

all of which use equal tile dimensions. Figure 8 shows execution
times of each application run for varying tile sizes. TB size is
set as 1024, all 15 SMs in the GPU are used and tile width
and height are varied together between 256 and 1024. The
first two bars correspond to rectangular (square) tiles and
the last two correspond to hyper-tiles. The second and fourth
bars represent improvements due to PeerWave technique.

An immediate observation is the dramatic decrease in ex-
ecution time with the use of hyper-tiles. This is due to the
decrease in the number of intra-tile diagonal iterations from
2n− 1 to n. PeerWave further improves the performance in
both hyper-tile and square tile cases due to increased inter-tile
locality and decreased SM idle times. PeerWave shows better
performance when using hyper-tiles due to decreased mem-
ory contention. The details of the speedup will be analyzed
throughout the remainder of this section.

The results also show that the decrease in tile sizes reduces
the performance due to under-utilization of CUDA cores
inside each SM. Since the maximum intra-tile parallelism is
limited by the minimum dimension in the first four execution
methods, tile size of 1024x1024 (hence TB of size 1024) gives
maximum performance.

7.2 Execution Time: Flexible Hyper-Tiles
Flexible hyper-tiles (method 5) decreases total idle time by

increasing number of synchronization points via smaller tile
widths. Also, intra-tile utilization is kept maximum by using
largest tile heights. The optimal tile width is determined by
the provided model and then passed to PeerWave kernel as a
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Figure 8: Kernel execution times for global barriers and PeerWave approaches with and without the use of
hyper-tiles.

parameter. In this subsection, we first evaluate the accuracy
of our model in finding the best synchronization intervals, and
then using the optimal values, we compare Flexible hyper-tiles
(FHT) method with the best performing equal tile dimension
methods 3 and 4.

7.2.1 Model Verification
To verify the accuracy of tile width optimization model

presented in Section 4, we have compared the execution time
estimated by Equation 1 with the measured execution time
for the FHT method. The model parameters, d and τs are
measured in an offline run using a 0.6% of the total data. This
ratio corresponds to the initial corner region which spans 135
tiles out of 2025 in total. We fix the tile height to 1024 and
vary the tile width from 2 to 1024. The comparison between
the estimated and measured execution times is shown in
Figure 9.

Overall, our model represents the execution pattern of Peer-
Wave approach quite well. It can be seen that both experiment
and simulation curves have a U shaped pattern which points
to the trade-off between synchronization overhead and idle-
ness reduction. The slight discrepancy between the simulation
and experiment is due to variation of the values d and τs
throughout the execution. Since we are using only an initial
portion of the execution, the increased memory contention
towards the middle region of the input matrix affects the
blocking time B and hence the critical path. Although the
execution times are slightly different, the synchronization
interval estimation is accurate.

Figure 9: Comparison of numerical simulation and
experimental results for Flexible hyper-tiles.

7.2.2 Flexible Hyper-Tiles (FHT)
To evaluate flexible hyper-tiles, we take method 3, global

synchronization with hyper-tiles (GS+HT), as our baseline
and compare its performance with methods 4 and 5, i.e. Peer-
Wave w/ hyper-tiles (PW+HT) and PeerWave w/ Flexible
hyper-tiles (PW+FHT). We fix both tile height and width to
1024 for GS+HT and PW+HT, as these give the best results.
On the other hand, for PW+FHT, we have set tile height as
1024 and varied tile width between 64, 128, and 256, which
are the most close-to-optimal values reported by our model
as well as the experiments.

Figure 10: The speedup obtained by Flexible hyper-
tiles method.

As the results given in Figure 10 show, flexible hyper-tiles
approach improved upon our original PW+HT technique
and increased the final speedup by up to 2x compared to
the recent approach based on global barriers with hyper-tiles
(GS+HT) [5]. When compared to the effects of using smaller
tiles with equal dimensions shown in Figure 8, the results
clearly show the benefits of changing synchronization interval
without affecting utilization.

7.3 Idle Times
To further analyze the effects of peer-SM synchronization we

measure the average time that an SM stays idle and compare
it to the idle time spent on global barriers. As previously
shown in the Figure 2 in Section 2, we classify the idle time
into two categories: (a) Corner, the compulsory wait time
spent during the beginning & end of the execution, where
the parallelism is less than total number of SMs(15); and (b)
Intermediate, where there are always more parallel tiles than
SMs.

The results in Figure 11 shows the break down between
border (blue) and intermediate (orange) idle times for each
application and the technique. PeerWave dramatically reduces
the intermediate idle time both with and without hyper-tiles,
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whereas the corner idle times remain similar as expected, due
to limited parallelism in those regions.

Figure 11: Breakdown of Per-SM average idle time
between two phases of the execution.

Reduced idle times cause more SMs to be active hence
result in increased memory throughput as shown in Figure 13.
PeerWave was able to improve memory bus utilization more
in both cases with and without hyper-tiles. On the other hand,
use of hyper-tiles dramatically reduces total memory transac-
tions due to reduced number of intra-tile diagonal iterations
and increased coalesced accesses, therefore less throughput is
needed.

7.4 Tile Locality
Another important drawback of global barriers is overcome

by PeerWave via increased inter-tile locality due to row-SM
assignment. To observe this, we measure average time required
to execute a single tile and give the results in Figure 12(a). Tile
execution times are reduced between 15% and 25% compared
to global barriers.

Figure 12: On the left (a) average per-tile execution
times and on the right (b) total L2 read misses

We have also profiled the total number of L2 read misses
using NVIDIA’s profiling utility, nvprof, and report the re-
sults in Figure 12(b) for 32-byte transactions. As expected,
PeerWave reduces the misses in both cases. Although the
improvement seems to be minor, the effect on execution time
is considerable due to high cost of a global memory access.

7.5 Synchronization Cost
We measured the total time spent during flagRead(), flag-

Write() and global barriers using the device-side clock64()
CUDA function. The cost of updating global barrier mutexes
in global-synchronization with HT (GS+HT) and the com-
munication flags in PeerWave with HT (PW+HT) is given in
milliseconds in Table 2. The values correspond to the total

Figure 13: Total GPU global memory throughput.

time spent for synchronization . Although PeerWave improves
the synchronization times by around 25%, the total sync cost
in both cases is actually marginal and only corresponds to
under 0.1% of the total execution times. Most of the speedup
obtained by PeerWave is achieved via improved load balance
and locality.

DTW HEAT2D INT SAT SOR SW

GS+HT 4.28 4.25 3.77 4.25 4.27 4.25

PW+HT 3.49 3.39 2.37 3.36 3.4 3.43

Table 2: SM Synchronization times in milliseconds.

8. RELATED WORK
Wavefront parallelism in the literature has drawn attention

under various contexts like dynamic programming, stencil
computations and time based iterations (i.e. Gauss-Seidel
or Jacobi) and we discuss the GPU related sub-set of the
literature in this section.

Datta et.al [3] are among the first who study the effec-
tiveness of stencil computation on GPUs and compare the
performance with multi-core architectures. They focus on
data allocation and bandwidth optimizations and present a
run-time that auto-tunes architecture specific parameters. [18]
is another early study which employs tiling and successive
placement of data on the memory for coalesced access on
GPUS. They implement in-kernel global barriers using device
memory, to prevent going back to CPU for ensuring diagonal
dependencies and compare the performance with host-based
cudaDeviceSync() function. Yan et al. [19] employs synchro-
nization between different stages of parallel prefix sum to
remove global barriers between reduce and scan phases.

To decrease un-coalesced memory accesses and increase lo-
cality, the study in [2] proposes a CUDA based API, Dymaxion,
that remaps memory layout via on-the-fly index transforma-
tions. They implement diagonal-strip mapping which assigns
tiles in the same diagonal to consecutive memory locations.
Sandes et al. [14] implements Smith-Waterman algorithm
on GPUs via application specific optimizations like block
pruning and multi-stage algorithm execution. As an attempt
to improve inter-tile load balance, the study in [9] specula-
tively executes tiles of Gaussi-Seidel, Jacobi and SOR loops,
and tests them for accuracy as the iteration asynchronously
proceeds. However, eliminating global barriers removes the
need for such techniques.

Polyhedral loop transformations are commonly used to im-
prove intra-tile utilization. The study in [5] proposes compiler-
level transformations for arbitrary loop nests. Loop iteration
spaces are skewed using affine transformations where the
transformation matrix is determined by the dependency vec-
tors. Grosser et al. [6] uses trapezoidal tiles and automatically
generates CUDA code to transform given loop nests. Another
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paper [7] proposed a stencil compiler that facilitates inverted
and upright split-tiling for improved parallelism. The study
in [1] considers diamond tiling for time iterated computations
with periodic data domains to improve parallelism and lo-
cality. However, all of these approaches still rely on global
barriers between tile diagonals.

Several studies have also focused on heterogeneous execu-
tion on multi-core CPUs and multiple GPUs. Among the
most notable ones, [20] automatically generates 3D stencil
code for multi-GPU computing. A more recent study [12]
partitions the load across multiple CPUs and GPUs while
automatically adjusting tile sizes in the run-time for the best
load balance across heterogeneous processors.

9. CONCLUSION
In this paper we introduced PeerWave, a new paralleliza-

tion scheme for nested loops with data dependencies. Our
approach eliminates inter-tile global barriers and uses SM-to-
SM direct communication instead. We improve inter-tile load
balance and locality that greatly reduces SM idle times. We
further improve PeerWave with Flexible Hyper-Tiles which
allows fine-granular synchronization interval adjustment while
keeping intra-tile utilization at its maximum. We showed that
PeerWave can achieve speedup of up to 2x when compared
to existing global barrier based approaches.
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