
1

Designing Algorithms for the EMU
Migrating-threads-based Architecture

Mehmet E Belviranli, Seyong Lee, Jeffrey S Vetter
Oak Ridge National Laboratory

belviranlime@ornl.gov, lees2@ornl.gov, vetter@ornl.gov

Abstract—The decades-old memory bottleneck problem for
data-intensive applications is getting worse as the processor core
counts continue to increase. Workloads with sparse memory
access characteristics only achieve a fraction of a system’s
total memory bandwidth. EMU architecture provides a radical
approach to the issue by migrating the computational threads to
the location where the data resides. The system enables access
to a large PGAS-type memory for hundreds of nodes via a Cilk-
based multi-threaded execution scheme.

EMU architecture brings brand new challenges in application
design and development. Data distribution and thread creation
strategies play a crucial role in achieving optimal performance
in the EMU platform. In this work, we identify several design
considerations that need to be taken care of while developing
applications for the new architecture and we evaluate their
performance effects on the EMU-chick hardware. We also present
a modified BFS algorithm for the EMU system and give experi-
mental results for its execution on the platform.

I. INTRODUCTION

The demise of Moore’s law has led the evolution of
computing towards multi-core CPUs, many-core chips, general
purpose GPUs, FPGAs, and other domain-specific accelerators.
As the number of processing units sharing the same memory
bus increased, these architectures employed deep-pipelines,
multi-level caches, and wide memory channels to get around
the so-called ‘Von Neuman bottle-neck’. Such systems favored
compute-intensive workloads with predictable access patterns
and high locality to exploit their advertised throughputs.

On the other hand, applications that fall into ‘data-intensive’
category, such as sparse matrix-based BLAS operations and
graph analytics, only managed to achieve a tiny fraction of
the Rmax (i.e., maximal achieved performance). These types
of workloads usually exhibit ‘weak-locality’ where frequent
irregular accesses are scattered across a large memory range;
therefore, their compute efficiencies are majorly limited by data
movement capabilities of the underlying architectures. As the
computation scales over a slower fabric, the dramatic increase
in latency forces the need to further focus on ‘data-movement’
and reduce memory-imposed transfer and communication
bottlenecks.

The decades-old memory-bottleneck problem has been
handled by the industry and research communities in many
dimensions. Among the most notable of these, in SMP-based
systems, a temporary remedy is being sought by investing
into higher-throughput 3D-stacked memory systems such as
high-bandwidth memories (HBM) [16]. The idea of processing
in memory (i.e., PIM) coupled with HBM [18][11][3] has
recently shown promising solutions for shared memory systems,
but they are limited in scalability due to being single-node

oriented. On the other hand, partitioned global address space
(PGAS) based languages [9], [5] provided an alternative and
more-scalable solution by tightly coupling threads to memory
locations. However, the limited scope of application classes
that can utilize such languages and the difficultly in designing
algorithms around the concept of ‘stationary-threads’ have not
provided a long-term solution to the problem in question.

EMU[7] is a new architecture that attempts to address
the weak-locality problem in data-intensive applications by
migrating the threads to location where the data resides. The
memory is accessed via a global address space, and since the
data does not move, the need for cache coherency is eliminated.
The programming model is based on Cilk [2], and thread
migration is automatically performed by the device runtime as
the memory accesses occur.

In this study, we discuss the architectural considerations that
need to be taken into account while designing applications
for EMU systems. We also present a modification of level-
synchronous breadth-first-search (BFS) for EMU. Our paper
makes the following contributions:

• We enumerate, discuss, and compare several programming
considerations for the EMU architecture.

• We present an exploratory performance analysis on
the effects of these considerations on the EMU-chick
hardware.

• We design a level-synchronous BFS optimized for the
EMU platform.

• We present a preliminary evaluation of the proposed BFS
implementation on the EMU-chick hardware.

II. EMU ARCHITECTURE

EMU is a novel architecture that provides scalable access to
a common partitioned global address space (PGAS) through a
simple programming interface. The hardware is hierarchically
organized as nodes, nodelets, and gossamer cores from top
to bottom, and each nodelet owns a partition of the globally
addressable memory. Different from existing PGAS and active
messaging based solutions, a thread in EMU migrates to the
memory location of the operand that the current instruction
operates on. The rest of this section summarizes the hardware
and programming model for the EMU system. Further details
on the EMU platform can be found in [7].

A. Hardware
The specific hardware discussed in this study is the 8-node

EMU-chick system [17], and it is implemented using one FPGA
per node in a single chassis. The architecture, on the other
hand, is designed to scale up to hundreds of nodes that can

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

2

NodeNodeNodeNodeNodeNodeNodeNode

Nodelet

GCGC NQM

Memory Front End

NC-DRAM

Stationary
Core (SC)

PCIe
Interface

PCIe
InterfaceSSD

DRAM

R
ap

id
IO

In

te
rc

on
ne

ct

Fig. 1: Emu-chick hardware overview.

fit inside a single rack. Figure 1 shows an overview of the
components that the current hardware is composed of, and the
Table I gives the specifications of the EMU-chick product.

Each node incorporates eight nodelets, an array of DRAMs, a
migration engine, PCI-Express interfaces, and a stationary pro-
cessor (SP), accompanied with an SSD. A nodelet contains two
Gosamer cores (GC), each of which supports 64 concurrent in-
order, single-issue hardware threads. Nodelet Queue Manager
(NQM) moves packets between GCs, migration engine (ME),
and Memory front-end (MFE). Incoming thread packets (i.e.,
execution requests) are controlled by NQM, and GCs request
a thread from NQM when they become ready-to-execute. ME
acts as a crossbar between NQM and the six serial RapidIO[6]
interfaces that connect the node to other nodes.

Memory organization is the centerpiece of the EMU design.
Each node has a 64-byte channel DRAM, divided into eight
8-byte narrow-channel-DRAMs (NC-DRAM). Because EMU
does not employ shared caches or coherency, using higher
number of memory units with narrower channels allows
higher access rates to be achieved. MFE serves the memory
transactions initiated by local GCs, and it also handles the
atomic operations requested by remote GCs. SPs are used
to run node-level service tasks, such as running an O/S and
injecting the threads migrating to the node into the ME.

B. Programming Model

EMU supports a PGAS model, and the memory is acces-
sible via conventional pointer addressing. The parallelism is
expressed via Cilk programming model [2], and the current
LLVM-based EMU compiler supports three Cilk keywords:
cilk_spawn, cilk_sync, and cilk_for.
cilk_spawn is used to create a new thread via a non-

blocking call. Thread contexts in EMU are typically around
10-20 64-bit words, and they are packed in the newly spawned
child threads. The context is duplicated in full so that the
children can further spawn threads independently, however,
with lower priorities than their parent. The thread migration
occurs without programmer intervention. The node boundaries

TABLE I: EMU-Chick hardware specifications

EMU-Chick Specifications
Nodes 8 total
Nodelets 8 per node
Memory 64GB per nodelet
Compute cores 2 Gossamer cores (GC) per nodelet
Service cores 1 Stationary core (SC) per node
System Interconnect 4-lane Serial RapidIO 2.3 @ 6.25 Gbit

are invisible to the application and the entire system is seen
as a collection of nodelets.

A spawn is considered either a local or remote spawn,
depending on the following two conditions:

• Remote spawn: If a memory address is given in the
parameters of the spawned function, the compiler inserts
proper instructions so that the parent thread first migrates
into the node/nodelet that hosts the memory at the given
address, and then, the child thread is spawned at the
remote location.

• Local spawn: If no address can be extracted within the
spawn parameters, the child thread is spawned locally,
and migration is not performed until the child issues its
first memory access.

Remote spawns are performance-effective if the parent thread
needs to launch many threads that will access consecutive
locations on the target nodelet. Local spawns are preferred if
the number of child threads that are expected to operate on
nearby remote memory locations is not high.
cilk_sync causes the calling (i.e., parent) thread to wait

for all spawned children. There are implicit syncs at the end of
each code block. cilk_for spawns a thread for each index
of the loop, and currently it is implemented in a naive way
that causes performance issues. The details of parallelizing
for loops efficiently on the EMU architecture is explained
and experimented in the upcoming sections.

EMU API also provides intrinsic functions to perform atomic
and remote operations. These operations allow threads to issue
remote writes without migrating. These writes are performed
by the memory front-end of the corresponding nodelet/node
that hosts the address in question. Some atomic operations
return the result of the operation whereas a remote update
only returns an ACK to the issuing thread to indicate that the
operation is complete. EMU does not provide an interface to
perform remote reads, and a thread should always migrate to
the nodelet of the memory that is being read.

III. DEVELOPING ALGORITHMS FOR EMU ARCHITECTURE

In this section, we first raise several design considerations
unique to the EMU architecture and discuss their implications
on applications. Then, we demonstrate the resulting perfor-
mance of these designs using scalar vector-add on the EMU-
chick hardware.

In general, reducing memory access times is a primary
concern for applications running on traditional SMP based
systems. However, on EMU, minimizing total number of
thread migrations is the most important design goal. Memory
allocation patterns, thread spawning strategies, and parallelism
granularity are the three factors that affect the total number of
migrations, and we will discuss them below.

A. Memory allocation patterns
The way that the buffers are allocated in the memory has a

direct implication on the number of thread migrations, hence the
performance, for EMU applications. Because the computation
is always done on the nodelet where the operands are located,
memory should be distributed across the global address space
while also keeping the indicies belonging to different data
ranges close enough so that a thread can execute an instruction
with a minimal number of hops.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

3

Nodelet nNodelet 2Nodelet 1

1

n0 ..
.

..
.

m
-n

+
1

n
+

1
1 ..
.

..
.

m
-n

+
2

2
n-

1
n

-1 ..
.

..
.

m
-1

A[0][0]
A[0][1]

…
A[0][m/n-1]

A[0]
A[1][0]
A[1][1]

…
A[1][m/n-1]

A[1]

A[n-1][0]
A[n-1][1]

…
A[n-1][m/n-1]

A[n-1]

0
...
... m-1...

(a)

(b)

(c)

Fig. 2: Different memory allocation patterns for EMU:
(a) mw_localmalloc, (b) mw_malloc1dlong and
(c) mw_malloc2d

EMU provides three types of memory allocation inter-
faces: mw_localmalloc, mw_malloc1dlong and mw_-
malloc2d, as visualized in Figure 2. mw_localmalloc
allocates a single chunk of memory on the nodelet that is local
to the pointer given in the parameters. mw_malloc1dlong
allocates an array, where each element (i.e., long) is striped
across all nodelets. mw_malloc2d lets the programmer
specify the total number of blocks and the size of each block
, and returns a double pointer whose dimensions correspond
to the block and element indicies, respectively. Each block is
a consecutive chunk created on a single nodelet, and if the
number of blocks is bigger than the number of nodelets, then
the blocks are distributed across nodelets in a cyclic round-
robin fashion.

Considering a 2D allocation pattern, the size of each block
and the total number of blocks strongly co-relate to the number
of thread migrations. The total migration overhead, MT , in a
simple memory-scan operation can be written as a function of
intra-node (Mm) and inter-node (Mn) migration costs, block
size (|B|) total number of blocks (nb), nodelets per node (nm),
and total number of nodes(nn), as follows:

MT = Mm(nb −
nb

nm
) +Mn

nb

nm
(1)

From Equation 1, it is clear that the overhead will get larger
as the number of total blocks increases. On the other hand,
having larger blocks will cause more threads to be created
initially on a less number of nodelets. This will limit both the
memory bandwidth and the total computation power and also
will increase the idleness of the remaining nodelets during the
initial spawn operations.

Figure 3 depicts the outcome of this trade-off relation for a
scalar vector addition. This experiment was run on all 8 Nodes
and 64 nodelets with total number of blocks varying between 1
and 218 on total vector sizes of 224, 225, 226, and 227 elements.
The chart on the top shows the execution times in y-axis for
the entire x-axis range and the bottom chart gives more detail
for the block-size range where the performance is optimal. The
results clearly show that lower number of blocks heavily impact
memory-bandwidth utilization and, as block count gets larger,
the execution is bottlenecked by inter-nodelet and inter-node
migration overheads, regardless of the total vector size.

B. Thread spawning strategies

Deciding where to spawn threads is also an important
consideration in programming the EMU system. As described
in the previous section, a local spawn is preferable if the child
thread will access a data range that will not be accessed by the
consecutively spawned children. On the other hand, in most
cases the child threads will expose a weak-local behavior where
they will operate on the data that are located close to each
other. In such applications, like graph algorithms, a remote
spawn, where the parent thread will migrate to the nodelet that
a sub-set of children will be most likely to execute on, will
result in less migration overhead.

Another factor affecting performance is determining when
the child threads should be spawned. For example, if a parent
needs to spawn a parallel thread for every iteration of a for
loop, there are two options:

1) Flat spawn: The parent thread sequentially iterates over
the for loop and spawns children. If remote spawns are
utilized, the parent will first migrate to the nodelet where
the child thread will be spawned. The total spawning and
parent migration overhead can reach up to O(n) in this
scenario.

2) Tree spawn: The process of creating children in EMU
can be parallelized by using a recursive, hierarchal spawn.
When compared to the previous approach, the overhead
of tree spawn can be reduced to O(logn) at the cost of
additional threads spawned for the non-leaf nodes of the
recursion tree.

Figure 4 depicts the results of an experiment that shows the
effects of using different depths of recursive spawns for scalar
vector-add on varying input sizes. The experiment was run
on a single node, 8 nodelets with a fixed number of blocks
(nb=64). Spawn tree depth level one, D = 1, refers to the flat
spawn case explained above, and other series correspond to

Fig. 3: Execution time for scalar vector add for different data
sizes and block sizes:(a) Entire x-axis range shown on the top
and (b) a sub-set of x-axis shown on the bottom for a more
detailed view.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

4

Fig. 4: Effects of spawn recursion depth on performance for varying vector lengths and fixed number of blocks (nb=64) . The
execution times are normalized to D=1 values, and the absolute times in miliseconds for D=1 values are shown in the above
corresponding columns.

the tree spawn cases. The execution times are normalized to
D = 1 results. In all cases, a non-flat spawn tree achieves
better performance, since the overhead of serial spawn takes
considerably longer, especially when the computation (i.e.,
vector length) is short. Best performance is obtained when
the tree depth is three, (D = 3), where every thread spawns
22 = 4 children at every recursion level, until a thread for each
of the 64 blocks is launched.

C. Parallelism granularity
Each nodelet in EMU-chick can support up to 256 live

threads and also can hold context information of up to 500
threads, depending on their total resource usage. In current
HW implementation, threads that exceed this level will fail to
spawn, and the issuing parent thread will be forced to execute
them as a regular function call.

This type of thread scheduling behavior requires the pro-
grammer to implement active measures so that total number
of threads per nodelet is kept under control. This can be done
in two ways:

1) Workers and queues: In producer/consumer type of
applications, a fixed number of threads can be spawned
to process a large chunk of data allocated on a nodelet.
This approach would require employing queues for each
worker and inter-nodelet load balancing policies.

2) Thread groups and barriers: An easy way to ensure that
for loops do not spawn more than the maximum that the
nodelet can execute concurrently is to group the spawn
operations into an additional loop and deploy cilk_-
sync after each group. While this method would require
less programming effort, global barriers may prevent full
utilization of the GCs and memory bandwidth in a nodelet.

The experiments presented in this paper follow the latter
approach. In order to control the number of threads spawned
on each nodelet, we divide each block into further chunks.
We spawn a thread for each chunk and within the chunk, we
serially iterate over the indicies so that the total number of
threads are limited. Optimal number of threads per nodelet,
hence the chunk size per workload, is currently determined
by trial and error due to missing resource usage and profiling
tools.

Figure 5 shows the effects of using different number of
threads per nodelet, while the total number of blocks and block

Fig. 5: Effects of using different number of threads per nodelet,
with fixed block size and counts, for different input sizes.

sizes are fixed for a given input size. For this experiment we
set the scalar component of the vector add to be calculated in
a computation-heavy way so that the migration overhead does
not dominate. The results show that any thread count between
32 and 512 behaves optimal. As the number of threads per
nodelet gets higher, the execution times increase dramatically,
since thread contexts cannot be stored on the nodelet and every
newly spawned thread is serially executed. Smaller input sizes
are more sensitive to this behavior due to decreased number
of memory migrations.

IV. CASE STUDY: LEVEL-SYNCHRONOUS BFS
In this section, we present our design and evaluation for

a level-synchronous BFS implementation optimized for the
EMU-chick system (BFS-EMU).

A. Graph representation and data staging
In our implementation, we used compressed sparse row

representation (CSR)[4] to represent graphs in memory. CSR
involves two data structures: node and edge arrays. Nodes array
holds the number of out-going edges (i.e., neighbors) and the
starting index of neighbors on the edges array, which stores
the target node index for each edge. We found CSR to be
an appropriate representation since a node and its neighbors
can be processed with fewer number of migrations and local
spawns in most cases.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

5

I/O operations on EMU are currently binded to the first
nodelet of the node that the execution is initiated. For this
reason, we perform data staging (i.e., reading the graph from
the input files) in two separate phases. To prevent repetitive
thread migrations between the first nodelet and others during
data staging phase, the graph is first read into the a temporary
local buffer on the first nodelet. Then, in-memory nodes and
edges arrays stored in the first nodelet are copied into the
distributed memory.

B. Data partitioning

Proper distribution of data across multiple nodelets and
nodes is the key to obtaining high performance in the EMU
architecture. Level-synchronous BFS employs multiple data
structures with varying data sizes to ensure the synchronization
between multiple breadths and also to store the resulting
costs array. Since the nodes array is accessed along with
these structures, it is essential that all other data corresponding
to a node is also placed on the same nodelet.

BFS-EMU relies on five data structures (nodes, masks,
updatingMasks, costs, and visited) with nNodes
elements each and an edges array with nEdges elements.
Data is partitioned into a total of nBlocks blocks using
mw_alloc2d, and they are distributed across nodelets in a
cyclic round-robin fashion.

C. The algorithm

Our modified level-synchronous BFS algorithm for EMU
exploits the weak-locality exposed by the CSR format. In
level synchronous BFS, each breadth has two phases with
synchronization in between: visit (line 6) and update (line
10). In the first phase, graph_mask needs to be checked
for every node before deciding for further propagation into
the neighbors of that node. BFS-EMU follows a hierarchical
launch strategy and spawns a thread for every node block
(visit_node_block, line 6) so that further node related
operations become local to the spawned children.

When a thread is created for a node block (i.e., block-level-
thread), the starting address for the sequential memory that
corresponds to the block is passed as parameter so that a
‘remote spawn’ can be performed. This address is obtained via
mw_arrayIndex() function (not shown), which calculates
the remote location without requiring the parent thread to
migrate to the first nodelet where the double pointer array
is defined. Block-level-thread further iterates over the nodes
in the block (line 15) and spawns leaf level children (i.e.,
node-level-thread) (line 16) that will operate on each node. To
prevent creation of excessive number of threads, cilk_spawn
is invoked for every chunkSize.

Node-level-threads are responsible for iterating the edges of
a given node, and they further spawn a thread (line 23) for each
neighbor (i.e., leaf-level-threads). Since the neighbors of a node
are stored in a consecutive portion of edges array, a node-
level-thread migrates to the nodelet, where the neighbor indices
are located, only once. Each leaf-level-thread first migrates to
the nodelet where the neighbor’s corresponding data is located
and updates the costs, visited, and masks arrays of the
neighbor (lines 26-28).

After the neighbors of the nodes in the current breadth are
visited, all threads migrate back to the first nodelet and sync

1 void EMU_BFS(){
2 bool done=false;
3 while(done == false){
4 done=true;
5 for(long i = 0; i <nBlocks; i++)
6 cilk_spawn visit_node_block(nodes[i], ...);
7 cilk_sync;
8

9 for(long i = 0; i <nBlocks; i++)
10 cilk_spawn update_node_block(masks[i], &done,

...);
11 cilk_sync;
12 }
13 }
14 void visit_node_block(...){
15 for (j = 0; j < elementsInBlock; j+=chunkSize)
16 cilk_spawn visit_node(..);
17 cilk_sync;
18 }
19 void visit_node(nodeIndex, ...){
20 for (long k = j; k < j+chunkSize; k++)
21 if (masks[k]==true)
22 for(each neighbor of nodes[k])
23 cilk_spawn visit_neighbor(...);
24 }
25 void visit_neighbor(neighborIndex, cost, ...){
26 if (!visited[neighborIndex]){
27 costs[neighborIndex]=cost+1;
28 updatingMasks[neighborIndex]=true;
29 }
30 }
31 void update_node_block(...){
32 for (long j = 0; j < elementsInBlock; j+=

chunkSize)
33 cilk_spawn update_node(...);
34 cilk_sync;
35 }
36 void update_node(...){
37 for (long k = j; k < j+chunkSize; k++)
38 if(updatingMasks[k]==true){
39 masks[k]=true;
40 visited[k]=true;
41 updatingMasks[k]=false;
42 *done=false;
43 }
44 }

Listing 1: Pseudo code for BFS-EMU

there. In the second phase of the breadth, visited flags of
each node are updated based on the updatingMasks that
are set in the first phase, so that they will be visited in the
next breadth, if marked.

D. Evaluation
We evaluate BFS-EMU using different input graph sizes with

varying number of average degrees per node (i.e., deg(v)). Due
to limitations of the current multi-node execution mechanism,
we are only able to execute BFS-EMU stably on a single
node with eight nodelets. We also run the original Cilk based
implementation on a dual-socket 14-core Xeon Haswell CPU
for comparison purposes. Figure 6 gives absolute execution
times on EMU using all eight nodelets on the top, and CPU
execution times on the bottom. We run the algorithm using
graph sizes changing from 128K to 16M nodes with average
per-node degrees varying from four to seven.

Since FPGA-synthesized Gossamer cores on EMU are
inferior to Xeon CPUs in terms of both frequency and ILP
characteristics, EMU execution times are considerably slower
than CPU times. On the other hand, EMU shows a scaling curve
very close to linear (as shown by the dashed lines), whereas

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

6

CPU performance deviates from the linear curve as the number
of nodes increases. Also, EMU handles the increase in average
degrees better than the CPU execution. Increasing neighbor
counts enables better distribution across nodelets hence ends
up in larger performance benefits. In CPU execution, on the
other hand, since the major bottleneck is memory bandwidth,
higher degree graphs do not perform differently.

We further investigate strong scaling properties of the EMU
platform by limiting the total number of threads while keeping
the data size same. In EMU, parallelism granularity is implicitly
controlled via memory allocations so that the threads will
run only on the nodelets/nodes where the data is allocated.
Figure 7 shows the results of this experiment where we
allocate the data on varying number of nodelets to restrict
total computation power. The relative speedup versus 1-nodelet
execution increases rapidly for the graphs with lower degrees.
Overall, the results show a sub-linear scaling pattern due to
the way level-synchronous BFS works. During initial and final
breadths, GCs are mostly under utilized; therefore having higher
number of nodelets do not directly translate into performance.

V. RELATED WORK

EMU architecturally inherits conceptual characteristics of
several earlier systems. Cray-XMT [13] is a highly multi-
threaded shared-memory architecture where all memory in-
structions go through the entire memory system, therefore
data-locality is no longer a concern. Active Messages [8]
pack the instruction address to integrate communication and
computation.The Execution Migration Machine [15] also relies
on migrating threads similar to EMU but targets SMP systems.

Fig. 6: BFS execution times on EMU on the top and CPU
times on the bottom.

Fig. 7: Strong scaling of different graph sizes.

Processing in Memory (PIM) based architectures [14][12] al-
low in/near memory computation with higher energy efficiency.
However, only a few of these architectures were implemented
in actual hardware, with limited amount of computational
power [10]. Software based approaches like Charm++ [1] helps
load balance on distributed memory systems by migrating
computational objects; whereas PGAS based systems like
UPC [9] usually rely on stationary threads operating near
the partitioned memory location.

VI. CONCLUSION

EMU presents a different approach to solve increasingly
worsening memory bottleneck problem in high performance
computing. The proposed solution relies on migrating threads
to the location where the memory resides, and EMU achieves
this without programmer intervention.

Our work shows that there are several unique architectural
considerations that need to be addressed while developing for
the EMU platform. While the programming interface mainly
relies on Cilk, proper usage of intrinsics are required for
performance effective algorithm design.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC05-00OR22725. This manuscript has been authored by UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with the
US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so,
for US government purposes. DOE will provide public access to
these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

7

REFERENCES

[1] Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E.,
Ni, X., Robson, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.:
Parallel programming with migratable objects: Charm++ in practice.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 647–658. SC ’14,
IEEE Press, Piscataway, NJ, USA (2014), https://doi.org/10.1109/SC.
2014.58

[2] Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall,
K.H., Zhou, Y.: Cilk: An efficient multithreaded runtime system, vol. 30.
ACM (1995)

[3] Boroumand, A., Ghose, S., Patel, M., Hassan, H., Lucia, B., Hsieh, K.,
Malladi, K.T., Zheng, H., Mutlu, O.: Lazypim: An efficient cache coher-
ence mechanism for processing-in-memory. IEEE Computer Architecture
Letters 16(1), 46–50 (Jan 2017)

[4] Borštnik, U., VandeVondele, J., Weber, V., Hutter, J.: Sparse matrix
multiplication: The distributed block-compressed sparse row library.
Parallel Computing 40(5-6), 47–58 (2014)

[5] Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and
the chapel language. The International Journal of High Performance
Computing Applications 21(3), 291–312 (2007)

[6] Changrui, W., Fan, C., Huizhi, C.: A high-performance heterogeneous
embedded signal processing system based on serial rapidio interconnec-
tion. In: 2010 3rd IEEE International Conference on Computer Science
and Information Technology (ICCSIT). vol. 2, pp. 611–614. IEEE (2010)

[7] Dysart, T., Kogge, P., Deneroff, M., Bovell, E., Briggs, P., Brockman, J.,
Jacobsen, K., Juan, Y., Kuntz, S., Lethin, R., McMahon, J., Pawar, C.,
Perrigo, M., Rucker, S., Ruttenberg, J., Ruttenberg, M., Stein, S.: Highly
scalable near memory processing with migrating threads on the emu
system architecture. In: Proceedings of the Sixth Workshop on Irregular
Applications: Architectures and Algorithms. pp. 2–9. IA3 ’16, IEEE
Press, Piscataway, NJ, USA (2016), https://doi.org/10.1109/IA3.2016.7

[8] von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active
messages: A mechanism for integrated communication and computation.
In: Proceedings of the 19th Annual International Symposium on Computer
Architecture. pp. 256–266. ISCA ’92, ACM, New York, NY, USA (1992),
http://doi.acm.org/10.1145/139669.140382

[9] El-Ghazawi, T., Smith, L.: Upc: unified parallel c. In: Proceedings of the
2006 ACM/IEEE conference on Supercomputing. p. 27. ACM (2006)

[10] Gaeke, B.R., Husbands, P., Li, X.S., Oliker, L., Yelick, K.A., Biswas,
R.: Memory-intensive benchmarks: Iram vs. cache-based machines.
In: Proceedings 16th International Parallel and Distributed Processing
Symposium. pp. 7 pp– (April 2002)

[11] Gao, M., Ayers, G., Kozyrakis, C.: Practical near-data processing for
in-memory analytics frameworks. In: 2015 International Conference on
Parallel Architecture and Compilation (PACT). pp. 113–124 (Oct 2015)

[12] Hall, M., Kogge, P., Koller, J., Diniz, P., Chame, J., Draper, J., LaCoss,
J., Granacki, J., Brockman, J., Srivastava, A., Athas, W., Freeh, V.,
Shin, J., Park, J.: Mapping irregular applications to diva, a pim-based
data-intensive architecture. In: Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing. SC ’99, ACM, New York, NY, USA
(1999), http://doi.acm.org/10.1145/331532.331589

[13] Mizell, D., Maschhoff, K.: Early experiences with large-scale cray xmt
systems. In: Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing. pp. 1–9. IPDPS ’09, IEEE Computer
Society, Washington, DC, USA (2009), https://doi.org/10.1109/IPDPS.
2009.5161108

[14] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K.,
Kozyrakis, C., Thomas, R., Yelick, K.: A case for intelligent ram. IEEE
Micro 17(2), 34–44 (Mar 1997)

[15] Shim, K.S., Lis, M., Khan, O., Devadas, S.: The execution migration
machine: Directoryless shared-memory architecture. Computer 48(9),
50–59 (Sept 2015)

[16] Standard, J.: High bandwidth memory (hbm) dram. JESD235 (2013)
[17] Technology, E.: Emu chick specifications, http://www.emutechnology.

com/products/emu-chick-specifications/
[18] Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J.L., Xu, L.,

Ignatowski, M.: Top-pim: Throughput-oriented programmable processing
in memory. In: Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing. pp. 85–98. HPDC ’14,
ACM, New York, NY, USA (2014), http://doi.acm.org/10.1145/2600212.
2600213

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

