Juggler: A Dependence-Aware Task-Based Execution
Framework for GPUs

Mehmet E. Belviranli
Oak Ridge National Laboratory
belviranlime@ornl.gov

Jeffrey S. Vetter
Oak Ridge National Laboratory
vetter@ornl.gov

Abstract

Scientific applications with single instruction, multiple data
(SIMD) computations show considerable performance im-
provements when run on today’s graphics processing units
(GPUs). However, the existence of data dependences across
thread blocks may significantly impact the speedup by re-
quiring global synchronization across multiprocessors (SMs)
inside the GPU. To efficiently run applications with inter-
block data dependences, we need fine-granular task-based
execution models that will treat SMs inside a GPU as stand-
alone parallel processing units. Such a scheme will enable
faster execution by utilizing all internal computation ele-
ments inside the GPU and eliminating unnecessary waits
during device-wide global barriers.

In this paper, we propose Juggler, a task-based execution
scheme for GPU workloads with data dependences. The
Juggler framework takes applications embedding OpenMP
4.5 tasks as input and executes them on the GPU via an
efficient in-device runtime, hence eliminating the need for
kernel-wide global synchronization. Juggler requires no or
little modification to the source code, and once launched,
the runtime entirely runs on the GPU without relying on
the host through the entire execution. We have evaluated
Juggler on an NVIDIA Tesla P100 GPU and obtained up to
31% performance improvement against global barrier based
implementation, with minimal runtime overhead.

CCS Concepts -« Software and its engineering — Run-
time environments; Parallel programming languages;

Keywords GP-GPU programming, task-based execution,
data dependence, OpenMP 4.5.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.

PPoPP ’18, February 24-28, 2018, Vienna, Austria

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-4982-6/18/02...$15.00
https://doi.org/10.1145/3178487.3178492

54

Seyong Lee
Oak Ridge National Laboratory
lees2@ornl.gov

Laxmi N. Bhuyan
University of California, Riverside
bhuyan@cs.ucr.edu

ACM Reference Format:

Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi
N. Bhuyan. 2018. Juggler: A Dependence-Aware Task-Based Ex-
ecution Framework for GPUs. In Proceedings of PPoPP ’18: 23nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’18). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3178487.3178492

1 Introduction

Using GPUs for general-purpose (GPGPU) computation has
become increasingly popular over the last decade. Massive
parallelism provided by hundreds of GPU cores offers con-
siderable speedups for SIMD type computations. In a typical
GPGPU-based execution scenario, data are mapped to thou-
sands of threads, which are logically grouped as thread blocks
(TBs). Each TB is assigned to and executed on one of the
GPU’s multiprocessor units (e.g., SMs, SMXs, or CUs), each
packing hundreds of single processing cores (e.g., SIMD lanes,
SPs, or CUDA cores). If a GPU application has computational
dependences across different parts of the data, hence the TBs,
then the developer needs to re-design the application and
break the execution into multiple kernel launches separated
by device-level synchronization calls (i.e., global barriers).
This is due to the fact that existing GPGPU programming
models, such as CUDA, force TBs running on different SMs
to be unaware of each other’s progress because SMs lack ef-
ficient hardware communication mechanisms between each
other.

A global barrier based GPU execution scheme usually
leads to two main problems: (1) Some SMs are forced to stay
idle as the execution approaches the synchronization point,
hence leading to underutilization of computing resources [7,
32]. (2) Because the GPU hardware scheduler assigns TBs
into SMs in an indefinite order, any inherent locality between
the data-dependent TBs is lost [28].

We believe GPUs can be used more efficiently to solve
problems with data-dependent characteristics. This needs
development of task-based execution models and efficient
synchronization techniques similar to how applications with
MIMD style of computation are handled on multi-core sys-
tems [24]. TBs in CUDA (or workgroups in OpenCL) are the
lowest level inter-SM scheduling units in current GPUs. The

https://doi.org/10.1145/3178487.3178492
https://doi.org/10.1145/3178487.3178492
http://www.acm.org/publications/policies/artifact-review-badging#functional
http://www.acm.org/publications/policies/artifact-review-badging#reusable
http://www.acm.org/publications/policies/artifact-review-badging#available
http://www.acm.org/publications/policies/artifact-review-badging#replicated

PPoPP ’18, February 24-28, 2018, Vienna, Austria Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan

conventional GPGPU programming models (e.g., OpenCL
and CUDA) follow a DOALL parallelism model and assume
that a TB can be executed on any SM in no specific order. As
an alternative, we argue that GPU applications can be repre-
sented as a graph of tasks. An in-GPU runtime should track
the dependences between these tasks dynamically and assign
them into SMs as soon as their computational precedences
are satisfied. In addition to solving the above global syn-
chronization issues, such an execution scheme would greatly
expand the class of applications that can be accelerated on

GPUs, without the need for a re-design.

In this paper, we propose Juggler, a new data-dependence-
aware task execution framework for GPUs. The compile-
time component of Juggler takes applications written with
OpenMP 4.5 task directives as input and applies source-to-
source transformations to form a DAG that will later repre-
sent the data/task flow. At the time of execution, the code
injected by Juggler creates the DAG using live input parame-
ters of the application and feeds it into our all-in-GPU device
runtime. The Juggler runtime employs persistent worker TBs
that grab tasks from distributed lock-free queues and process
them in the correct dependence order. The runtime also em-
ploys various queue placement policies to achieve maximum
load balance across SMs while preserving task locality.

Novelty: To the best of our knowledge, Juggler is the first
study to implement OpenMP 4.5 device runtime for inter-SM
task execution. Also, Juggler is the only in-GPU task-based
execution framework that resolves dependences on-the-fly
& in-the-GPU and schedules newly released tasks without
going back to CPUs.

We implemented the compiler transformations on Ope-
nARC [18], an open-source research compiler, and evalu-
ated our runtime on an NVIDIA Tesla P100 GPU. Juggler
improved performance up to 31% compared to the classic
global barrier based approach. The overhead of Juggler with
best performing scheduling policy was no more than 6%.

This paper makes the following contributions:

e We implement a novel, dependence-aware, in-device task
execution runtime for GPUs.

e We present compiler transformations to integrate our run-
time automatically into applications embedding OpenMP
4.5 task construct.

e We further explore the performance of the proposed sys-
tem using different queue-insertion policies.

e We demonstrate that Juggler improves execution with
minimal overhead when compared to device-wide global
barrier based approaches.

2 Motivation

Many GPGPU kernels and applications used in scientific
computing embed data dependences across different phases
of execution [12]. In a classical CUDA implementation, the
device is treated as a single computational unit, and the data
hazards are prevented by using device-wide synchronization,

55

1 cudaMalloc(&a_d, matrix_size);

2 cudaMemcpy(a_d, a_h, matrix_size, H2D);

3 for (int kk=0; kk<nblocks; kk++){

4 lubG<<<1,blockSize>>>(kk, nblocks, a_d);

5 int nBlocksSub = nBlocks-kk-1;

6 if (nBlocksSub > 0){

7 fwd<<<nBlocksSub, blockSize>>>(kk, nblocks, a_d);
8 bdiv<<<nBlocksSub, blockSize>>>(kk, nblocks, a_d);
9 bmod<<<nBlocksSub*nBlocksSub, blockSize>>>(kk,nblocks,a_d);
10 }

11}

12 cudaMemcpy(a_h, a_d, matrix_size, D2H);

Listing 1. Host-side pseudocode for a global barrier based
CUDA implementation of LU decomposition.

which we will refer to as global barriers. Listing 1 shows
a pseudocode for LU decomposition (LUD), a core BLAS
operation that relies on four different kernels to carry out
various phases of the computation. The kernels to process
the blocks in the sub-matrices need to be synchronously
issued (via cudaDeviceSynchronize() or using the default
stream) due to the computational dependences.

2.1 Task-Based Execution on GPUs

In this paper, we explore an alternative to global barrier based
CUDA execution. We argue that treating SMs as independent
stand-alone processors capable of running tasks with depen-
dences will provide a generalized and effective solution to
design- and performance-related issues with existing GPU
programming models. Once applications are represented as
task graphs, similar to multi-core CPU systems, SMs will be

BeE = B F B B F = =

i = e e e e e

BE = E B = E E T - |

8 B B B B = B B L - =

M= = = = == == == = =

= = = = == = ===

B = e B = B B -

ECIEE = B a :!- E‘E = =
FEXNES == B = = = = = = = =
CPNSES man B pae B B S ———r—
pE F BB EEEEEEE
m20==='_-'!!'!'! = = =
= = e e = = = = =
e = == B B = === E = = =
1 == B = = jlii:i = = =
e = & = B = = F ==+
= = = = === o e
_.=.m-E.r. i 0 i o
o === = - =il m i m mE = s ———
0 10 20 30 40

Time (sec)

o e B B F E = = =

S HEBBEPREELIL:: -

= ==~ o= B R R oh e e
48-_--II'='I-I-|I'II-:

E = £ S "= EE -1 =~

[=N B . B o N vEe b e
4oii-.-rr||.l-.:::

36 EBEEI I=:-:
pasls = = = B o Ii:_ =
xR ESEF] 1= iE ¢
B 3 E=E iR

- =
RS EREE i
- . =

: EIEEHE

2 - = -

o E—— R B -l:ll-li.=- -

0 10 20 30 40

Time (sec)

Figure 1. Per-SM TB/task execution timelines for global
barriers (top) and task-based approach (bottom).

Juggler: A Dependence-Aware Task-Based Execution Framework

addTask (...)
processInDep(..)

PPoPP 18, February 24-28, 2018, Vienna, Austria

1
(_Runtime Initialization)

processOutDep (...)

runtime<<<.>>>(...)

C

Data Initialization

Schedule Task

)

Juggler

Host API

s

[Host Context Creation)

®

T I o T T i T T i M o T T T s

- 4
(Juggler Transg)rmagl';)cr\gules)l CUDA Inspection
pen omprier Compiler Code

1

100C

J0IC

User Kernel
{0 o o |
[sm

{0 o o
SM | SM

I_J, J,_I
Resolve

[0 o

3

#pragma omp task

{

Runtime Context
Creation

) &

Dependencies

depend (in:...)
depend (out:...)

Juggler Host Runtime

Juggler Device Runtime

compute kernel (..)

(App Finalization

GPU

OpenMP 4.5

Application - Host

Figure 2. An overview of Juggler framework. Juggler-related components and operations are shaded.

able to consume ready tasks as they become idle, without
relying on global synchronization mechanisms.

Figure 1 illustrates an example where task-based execu-
tion on an NVIDIA P100 GPU improves the total execution
time for the LUD code given above. The figure depicts the
timelines for each SM and shows how long they were busy
with processing TBs belonging to the same or different, color-
coded kernels. Global barrier based execution (shown in the
top chart) requires device-wide synchronization between
each kernel launch, whereas Juggler’s task-based execution
(shown on the bottom chart) overlaps the tasks belonging
to different phases through local dependence resolution. As
a result, removing global barriers increases total SM utiliza-
tion and improves execution time by more than 20%, for this
specific example.

As shown in the example above, managing dependences
locally provides considerable performance benefits. How-
ever, shifting from current DOALL-based GPGPU execution
paradigm with global barriers to the task-based operation
with local synchronization presents several challenges.

2.2 Design Considerations

The first question that a task-based framework needs to ad-
dress is how should tasks and their dependences be represented.
Most of the notable studies on heterogeneous task-based ex-
ecution [2, 4, 11, 25, 34] have created their own tasking APIs.
However, re-designing existing scientific applications to use
these custom APIs or specialized tasking models requires
additional effort for the developers. Moreover, most of these
solutions are designed for a specific class of applications. A
GPU tasking runtime based on a widely used programming
model will minimize the integration effort.

The next challenge in implementing an in-GPU task-based
execution scheme is figuring out how to track and solve depen-
dences between tasks. These operations require maintaining
in-memory data structures, such as DAGs, and updating
them on-the-fly as the tasks are processed. A few studies

56

[16, 22, 30, 33] have proposed software-based runtimes that
grab tasks from ready-queues and execute them on SMs.
However, these approaches commonly rely on host-based
queue population and dependence resolution mechanisms,
therefore introducing a two-way task transfer bottleneck
over the PCI-e bus [20]. An all-in-GPU runtime would allow
quick retrieval and insertion of the tasks as their parents are
processed, without going back to the host.

Another consideration is about employing an efficient fine-
grained synchronization mechanism between SMs. Intra-SM
synchronization primitives (i.e., syncthreads()) are able
to provide fine-granular communication only between the
threads of the same wrap or TB, and cannot be used to ad-
dress the global barrier problem in question. CUDA dynamic
parallelism (CUDA-DP) enables in-GPU kernel-wide syn-
chronization between device initiated launches, however, it
has been shown to severely degrade the performance [9] as
the number of launches increase. Cooperative groups (CG)
recently introduced in CUDA 9.0 allow creation of thread
groups, which can span a subset or superset of threads be-
longing to a single or multiple TBs, respectively. However,
CG requires extensive programming effort to implicitly han-
dle inter-TB dependences by creating thread groups for every
parent—child relation. An ideal task-based execution scheme
should utilize a peer-wise communication mechanism between
desired SMs without forcing any cumulative synchronization
points.

3 Juggler Framework Overview

To address the above issues, we propose Juggler, a task-based

execution framework for GPUs. Juggler implementation is

entirely in software and runs on most recent GPUs. Different

from previous studies, Juggler uniquely features:

e An in-GPU SW-based device-runtime with dynamic de-
pendence tracking and resolution.

o Automated compiler support for applications using OpenMP
4.5 task directives.

PPoPP ’18, February 24-28, 2018, Vienna, Austria Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan

Figure 2 gives an overview of our proposed framework.
The compiler front-end of Juggler implements source-to-
source transformations to automatically convert applications
written with OpenMP 4.5 task directives to CUDA code that
uses our task-based GPU runtime. This is achieved by in-
strumenting the input source code with calls to the Juggler
host APIs. These API calls are used to (1) create/modify task
execution graphs (i.e., DAGs) before the device execution,
(2) initialize host/device contexts that keep necessary run-
time information, and (3) launch the device runtime.

Once the Juggler-integrated application is compiled with
nvee and executed, a previously injected inspection code first
creates a DAG with the input parameters that are available
at application launch. The DAG is then fed into the Juggler
device runtime along with other application-related con-
text that is necessary for the execution. The device runtime
is responsible for assigning tasks in the DAG to workers,
executing them by calling the associated user kernels, and
resolving the dependences after they are processed.

Running an application with the Juggler framework re-
quires a minimal effort from the user (e.g., if they want to
further optimize the CUDA kernel generated), provided that
the application is properly embedded with OpenMP 4.5 task
constructs. In addition to being transparent to such appli-
cations, Juggler also provides a general public CUDA API
regardless of the programming model being used.

4 Juggler: Compiler Transformations

Juggler utilizes the OpenMP parallel programming model
to bring task-based execution into the inside of the GPUs
(i-e., inter-SM). Accelerator support is introduced in version
4.0 via target pragmas and the ability to declare depen-
dences across tasks is included version 4.5. With this addi-
tion, OpenMP can enable a parallel application to specify
data access precedences without relying on the parent-child
relationship on which Cilk and CUDA-DP depend.

To minimize the programming effort and enlarge the scope
of the applications with which Juggler can be utilized, we
have implemented compiler transformations to automati-
cally incorporate OpenMP 4.5 task-based applications with
Juggler API calls. We have used OpenARC [18], an open-
source research compiler that supports various heteroge-
neous platforms and parallel programming paradigms.

For this work, we extended OpenARC with new source-to-
source transformation passes to convert OpenMP 4.5 device
constructs in an input program into output CUDA codes. If
target constructs in the input OpenMP program contains
tasks, the following transformation steps are applied to gen-
erate output codes embedded with Juggler API calls:

e Identify a target parallel region that contains the tasks.

e Create a host context for the application.

e Generate an inspection code that creates Juggler tasks and
process dependences.

57

e Create device contexts for the application and the runtime.

4.1 Identifying Target Regions Containing Tasks

The Juggler compiler pass operates on OpenMP target par-
allel regions that contain task-generating loops, and the
main objective is to merge as many task executions (i.e., kernel
launches) as possible into a single Juggler runtime instance
so that the benefits of global-barrier-free task execution are
maximized within a single launch. The Juggler compiler pass
identifies a target parallel region containing tasks as "eli-
gible for execution by a single Juggler runtime instance" (i.e.,
FJuggler region) only if the following two conditions hold:

(1) The computation carried within OpenMP tasks does not
affect the instruction flow on the host: Since the tasks will be
off-loaded to the GPU, conditionals within the Juggler region
should not rely on the outcome of the off-loaded computa-
tion. Otherwise, the compiler pass will not be able to produce
a runtime procedure without synchronizing with the host.
To check this condition, the Juggler compiler uses a classical
reaching definition data-flow analysis, which statically deter-
mines the definitions that may reach a given point in the code.
For a given instruction, the analysis finds an earlier instruc-
tion whose target variable can reach the given one without
an intervening assignment. If any reaching definitions for
the instructions located within the target parallel region
(but outside the tasks) are originating from the off-loaded
tasks, then the check fails.

(2) The data flow between consecutive OpenMP tasks within
the region remains in GPU memory: This will hold as long
as tasks are launched from the same Juggler region. Other-
wise, tasks from different regions will be mapped to separate
Juggler runtime instances.

If the compiler finds a Juggler region satisfying the above
conditions, the eligible region is annotated with internal
directives so that later passes can perform code transforma-
tions that will explained later in this section. If the compiler
fails to identify eligible regions, users can overwrite the com-
piler behavior by explicitly inserting the internal directive
into the input source code.

4.2 Inspection Code & Application Context

After a Juggler region is identified for execution by the Juggler
device runtime, a series of source-to-source transformations
is applied to convert it into an inspection code that will run
prior to the corresponding device launch. The main function
of the inspection code is to iterate over the tasks without
actually executing them and form the DAG, which will be
required by the runtime later. Pre-executing the inspection
code is necessary since the loop boundaries usually rely on
the input data, which are not available at compile time.

As the first step of inspection code creation, the compiler
pass packs all application-specific data and parameters into
a generalized interface called APP_CONTEXT. As shown on
the left side of Listing 2, this struct maintains common data

Juggler: A Dependence-Aware Task-Based Execution Framework

1 struct APP_CONTEXT { 1 struct TASK {

2 int tbSize; 2 char kernelType;

3 TASK* tasks; 3 char nChildren;

4 int totalTaskCount; 4 int childrenStartIndex;
5 int* dependencesCsr; 5 int nDependeeParents;

6 APP_DATA appData; 6 TASK_DATA taskData;

7Y 7}
Listing 2. Juggler APP_CONTEXT (left) and TASK (right).

like the task and their dependencies as well as application-
specific information, which are collected under APP_DATA.
All the pointers and variable names that fall under the scope
of the Juggler region are automatically declared inside APP_ -
DATA, and the references in the original code are initialized
and replaced with their counterparts in APP_DATA.

Juggler maintains two copies of APP_CONTEXT, host and
device, to transparently handle memory copy operations,
which are expressed implicitly via target map clauses in
OpenMP. Our compiler pass generates proper cudaMalloc
and cudaMemcpy calls between two contexts before and after
the runtime execution according to the map properties. Once
the host-side application context is initialized, the Juggler
compiler pass identifies the tasks that are to be off-loaded to
GPUs (i.e., omp task constructs within the Juggler region).
For each OpenMP task, we use Juggler host-side API calls to
first create a Juggler task and then process their dependences
specified by depend clauses.

4.3 Task Creation

Juggler tasks are the building blocks of the proposed execu-
tion environment. They are derived from structured blocks
preceded by omp task pragmas, which can be either a com-
pound statement or a function call. The pseudocode given
in Listing 3 represents a task-based implementation of LU
decomposition using OpenMP 4.5 task directives and target
parallel regions. The code shows calls to only the first two
operations of LUD, 1u0 and fwd, and excludes the latter two,
bdiv and bmod. The dependences between the two differ-
ent types of OpenMP tasks, 1u@ and fwd, are represented as
memory ranges.

1 #pragma omp target parallel map(a[0:mSize]) private(kk,ii,jj)

2 {

3 #pragma omp single

A for (kk=0; kk<nBlocks; kk++){

5 int diagBlock = kkxnBlocks*bSize+kkxbSize;

6 #pragma omp task firstprivate(diagBlock) shared(a) \

7 depend(inout: a[diagBlock:bSizel)

8 lu0(&(a[diagBlock]),bSize);

9 for (jj=kk+1; jj<nBlocks; jj++){

10 int colBlock = kk*nBlocksxbSize+jj*bSize;

11 #pragma omp task firstprivate(diagBlock, colBlock) shared(a) \

12 depend(in: a[diagBlock:bSize]) \
13 depend(inout: a[colBlock:bSize])
14 fwd(&(a[diagBlock]),&(a[colBlock]),bSize);

15 }

16 // Calls to bdiv and bmod are omitted.
17}

18}

Listing 3. Task-based LUD with OpenMP 4.5 directives.

58

PPoPP 18, February 24-28, 2018, Vienna, Austria

1 // Application kernel wrapper, invoked by the Juggler runtime
2 device__ void app_kernel(TASK+ task, APP_CONTEXT* appContext,
3 RT_CONTEXT* rtContext) {

4 APP_DATA appData = appContext->appData;

5 TASK_DATA taskData = task->taskData;

6 if (task->kernelType == KERNEL_TYPE_LUO) {

7 1ud(&(appData.a[taskData.diagBlock]),appData.bSize);

8 } else if (task->kernelType == KERNEL_TYPE_FWD) {

9 fwd (&(appData.a[taskData.diagBlock]),
10 &(appData.a[taskData.colBlock]),appData.bSize);
11 }

12 // Cases for bdiv and bmod are omitted.

13 }

Listing 4. Contents of the compiler-generated app_ker-
nel() function for LUD.

In the task-based execution scenario shown in Listing 3,
fine-grained task dependences remove the need for having
separate kernel launches for each sub-target region (i.e. 1u@,
fwd, bdiv and bmod). Functions operating on different data
regions (i.e., blocks) are mapped to separate tasks, and omp
task depend pragmas allow the dependences to be identi-
fied with the array index ranges to which each data block
is mapped. The functions called by each OpenMP task are
converted into CUDA-specific __device__ functions, and
they are parallelized for GPUs if they further contain inner
parallel regions (e.g., omp parallel pragmas). If an OpenMP
task construct is a compound statement, the Juggler com-
piler will outline it as a separate function before converting
it into a CUDA device function. The __device__ functions
are indirectly called later by the Juggler device runtime, un-
like the global barrier based scenario where the kernel is
explicitly launched from the host.

A Juggler task, as shown on the right side of Listing 2,
stores information essential to dependence tracking by the
runtime (nChildren, nDependeeParents, and childrenStart
Index), a user function identifier (kernelType), and the task-
specific data (taskData). Listing 5 shows the pseudocode
generated by the Juggler compiler pass, for the OpenMP 4.5
based code given in Listing 3. For each OpenMP task, the
pass injects the code to initialize the task using the host API
function addtask() along with a compiler-generated kernel
identifier (e.g., KERNEL_TYPE_FWD). Once the task is created,
the taskData field is populated with task-specific data that
are specified in the firstprivate clause of the OpenMP task
directive. It is important to note that the actual function call
to perform the task is not kept inside the inspection code.

The Juggler runtime uses kernelType and taskData to
identify which __device__ function is to be called within
the app_kernel(), as shown in Listing 4. The contents of
this API function are populated by the Juggler compiler pass.
The injected code supplies the application and task-specific
parameters packed in APP_DATA and TASK_DATA objects to
the corresponding __device__ functions.

4.4 Dependence Processing

Juggler compiler passes require any dependence relation be-
tween tasks to be explicitly provided by the depend clause

PPoPP ’18, February 24-28, 2018, Vienna, Austria Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan

1 // Inspection Code

2 for (kk=0; kk<nBlocks; kk++){

3 int diagBlock = kkxnBlocks*bSize+kkxbSize;

+ task=addTask(&appContext_h,KERNEL_TYPE_LUO);

5 task.taskData.diagBlock = diagBlock;

6 processInDep(task,appContext_h.appData.a,diagBlock,bSize);

7 processOutDep(task,appContext_h.appData.a,diagBlock,bSize);
8 for (jj=kk+1l; jj<nBlocks; jj++){

9 int colBlock = kkxnBlocks*bSize+jj*bSize;

10 task=addTask(&appContext_h,KERNEL_TYPE_FWD) ;

11 task.taskData.colBlock = colBlock;

12 task.taskData.diagBlock = diagBlock;

13 processInDep(task,appContext_h.appData.a,diagBlock,bSize);
14 processInDep(task,appContext_h.appData.a,colBlock,bSize);

15 processOutDep(task,appContext_h.appData.a,colBlock,bSize);

16}

17 // Task and dependency handling for bdiv and bmod are omitted.
18}

19 buildCSR(appContext_h);

20 initAppContext_D(appContext_h,appContext_d);

21 initRtContext_D(appContext_h, rtContext_d);

22 cudaMalloc(&(appContext_d.appData.a),mSize);

23 cudaMemcpy (appCntxt_d.appData.a,appCntxt_h.appData.a,mSize,h2d);
24 appContext_d.appData.mSize = mSize;

25 appContext_d.appData.bSize= bSize;

26 runtime<<<nWTB,nT>>>(appContext_d, rtContext);

27 cudaDeviceSynchronize();

28 cudaMemcpy(a,appContext_d.appData.a,mSize,d2h);

Listing 5. Pseudocode after Juggler transformations.

of OpenMP 4.5. The omp task depend clause takes three
types of list arguments: in, out, and inout. Juggler inspec-
tion code keeps track of these arguments for each newly
created task and builds a dependence tree (DAG) on-the-
fly. The example given in Listing 5 demonstrates how these
dependences are identified and processed during the inspec-
tion via two Juggler host API functions: processInDep()
and processOutDep (). Juggler first processes the array sec-
tions listed in the depend clauses to identify data regions
that this task reads and writes, and then it inserts a separate
arrow in the DAG (lines 6-7 and 13-15) between two tasks
containing read-after-write (RAW), write-after-read (WAR),
or write-after-write (WAR) dependences. Juggler supports
dependences with only one-to-one matching data ranges.

After the inspection code finishes building the DAG, build-
CSR() (line 19) is called to convert DAG into CSR represen-
tation. This function also populates a "ready-to-execute” list
of tasks that are placed into worker queues prior to launch.
Once all application- and runtime-related contexts are trans-
ferred into the GPU (lines 20-23), runtime kernel is called
(line 26) to propagate the execution to device.

5 Juggler: Runtime

The Juggler runtime is launched from the host as a CUDA
kernel with APP_CONTEXT and RT_CONTEXT as its inputs, and
it relies on persistent TBs [3] to process the tasks supplied
in the APP_CONTEXT.

RT_CONTEXT, shown in Listing 6, is application-independent,
and it stores internal structures that the runtime uses, such
as task queues, inter-TB signaling constructs, and other book-
keeping variables.

59

1 struct RT_CONTEXT{

2 int nWTB; // total number of worker TBs

3 intx queues; // task indices for APP_CONTEXT.tasks[] array
t intx queueEndIndex; // queue tail pointer

5 intx IQS; // Input queue size array, one index per WTB
6}

Listing 6. Juggler RT_CONTEXT (runtime context).

5.1 Worker TBs

The Juggler runtime utilizes persistent TBs as workers that
operate on dedicated task queues. In Juggler, worker TBs
(WTBs) serve three purposes: they (1) retrieve tasks from
their queues, (2) call user functions to execute these tasks,
and (3) schedule new tasks as their precedents are processed.

The number of workers, nWTB, is specified by the dimen-
sion of the grid supplied during the runtime kernel launch.
Because all WTBs need to be persistent and running alto-
gether, nWTB should be:

nWTB < #of SMs X max concurrent TBs per SM (1)

While the number of SMs is architecture-specific, maximum
concurrent TBs per SM is determined by the combined re-
source usage of the Juggler runtime and the wrapped user
functions for a given GPU. On the other hand, number of
threads per TB, nT, is application-specific and usually ob-
tained via the OpenMP parameter num_threads.

Figure 3 gives an overview of how WTBs operate in Juggler.
The top part illustrates workers along with their dedicated
task queues, whereas the bottom part shows the initial tasks
list, dependence matrix, and user data that are indexable with
the information held in tasks. The scenario demonstrates
runtime operation with three workers:

@ Initially, the first task, Ty, has already been inserted into
task queue Q; of the first worker, WTB;, by the host-side.

@ As soon as the runtime kernel is launched, WTBs start
continuously checking their corresponding task queues for

Figure 3. Overview of the Juggler runtime operation

Juggler: A Dependence-Aware Task-Based Execution Framework

"ready-to-execute" tasks. In this case, WTB; grabs T; and
passes it to app_kernel() to execute it. Here, the application
can fully utilize the entire SM on which WTB was working,
since the entire control is transferred to the app_kernel().

app_kernel() returns, and WTB; gets the control back.
The worker checks the dependence matrix for the children
(i.e., T, and T3) of the processed task T; and decrements
the dependence counters (nDependeeParents) of both. Since
these tasks do not have any other parents, their nDepen-
deeParents become zero, and T, and T3 are now ready to be
executed.

WTB; inserts the newly "freed" tasks T, and T3 into the
task queues of WTB; and WTB3, respectively.

The two idle workers, WTB, and WTB3, detect the new tasks
in their queues and start processing them.

The operations described between @& and @ correspond
to a work cycle, and this cycle is repeated as long as there are
ready tasks to process. The execution finishes when there
are no tasks in any of the task queues. The rest of this section
will explain the details of the operations summarized above.

5.2 Distributed Queues

The Juggler runtime employs a distributed queue scheme
to eliminate the need for a global lock on queue retrieval.
Moreover, since there is no central scheduler; therefore, each
WTB does the scheduling decisions (i.e., task insertion and
retrieval) in a distributed manner. Because no programmable
HW-based inter-SM communication mechanisms are avail-
able for current GPUs, WTBs can interact with each other
only via global memory. The Juggler runtime utilizes three

data structures, IQS[], queues[], and queueEndIndex[], which

are declared under RT_CONTEXT (shown in Figure 6), to man-
age inter-WTB task exchange operations through distributed
queues:

10S[] (i.e., input queue size) array allows a simple but
efficient signaling mechanism to let all WTBs know that there
is a task exchange. Each WTB; polls their corresponding index,
IQS[i], at the beginning of their work cycle. If IQS[1] is
greater than zero, there are ready tasks; if IQS[1i] is zero,
the worker needs to keep checking as other workers may
assign new tasks. To decrease the high cost of continuous
memory polling in GPUs, we force WTBs to pause after a zero
IQS[] read, by inserting a compute-intensive operation (i.e.,
cosine_sleep()). At the end of each work cycle, if a WTB
places a task into the queue of another WTB, a corresponding
IQS index is atomically incremented.

queues[] is the global data structure that stores queues
of all WTBs in a flattened one-dimensional array. The queue
entries are task indices for the APP_CONTEXT. tasks[] array,
and the total size of the queues[] array is n(WTBXQUEUE_LENGTH.
Juggler redundantly sets QUEUE_LENGTH equal to the total
number of tasks to prevent overflow.

queueEndIndex[] array holds the tail indices for each
queue, and its elements are atomically updated whenever

PPoPP 18, February 24-28, 2018, Vienna, Austria

a task is assigned to the corresponding WTB. On the other
hand, the head indices for each queue, queueStartIndex, are
kept locally in a single __shared__ variable by each WTB,
and they are not placed in the global memory. Because queue
head pointers are exclusively modified by the owner WTBs,
making them local does not violate our consistency model
(as explained later in this section).

5.3 Task Retrieval

At the beginning of each work cycle, every WTB; reads its

corresponding IQS[1] index and checks whether both of the

following conditions hold:

= IQS[i] > 0: A positive value indicates that another WTB
has inserted a task to the queue of WTB;.

= IQS[i] == queueEndIndex|[i] — queueStartIndex: This
check ensures that ongoing insertions for the same queue
are completed, and it prevents possible race conditions.
If the IQS[i] value does not match the difference between
the head and the tail of local queue (i.e., current queue
size) ,WTB; will keep reading IQS[i] until the conditional
is satisfied.

Once the checks above hold and k=IQS[i] is set to a pos-
itive value, the actual access to the queues[] array is per-
formed in parallel using the first k threads of WTB;. The
threads first read the task indices stored in the queues[] ar-
ray and then successively access APP_CONTEXT. tasks[] ar-
ray using these indices. Each retrieved TASK object is written
into the local task_buffer[] located in the shared memory
of WTB;. For each of the k tasks retrieved, WTB; calls the app_-
kernel() in a loop, since only one task can be processed by
a WTB at a time.

5.4 Dependence Resolution

After a task is processed by a WTB, the Juggler runtime
checks whether the children of the task have any other
dependences left. This check is handled via the following
procedure:

(1) The first nChildren threads of the worker access appCon-
text.dependencesCsr[] array in parallel starting from
task.childrenStartIndex. The dependences array re-
turns the children indices for the appContext.tasks.

(2) The TASK objects corresponding to the children indices
are also retrieved in parallel. Juggler stores the total num-
ber of unsatisfied dependences in the nDependeeParents
field of each child TASK. Because the parent of the chil-
dren is already processed, these fields are atomically
decremented once.

(3) If the return value of atomic decrement indicates that the
child does not depend on any other parent tasks, then
the corresponding index is saved into a shared memory
buffer for the scheduling phase.

Unlike the related work on GPU task execution, Juggler’s
parallel dependence resolution exploits architecture-specific

.

PPoPP ’18, February 24-28, 2018, Vienna, Austria Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan

optimizations. In step (1), the parallel accesses to depen-
dences_csr array are coalesced since CSR formatted DAG
representation allows indices of a parent’s children to be
placed adjacently in the memory. Moreover, actual TASK cre-
ation during the inspection phase follows the dependence
order, and the task indices of a specific parent’s children
are usually not located far from each other in the memory.
Therefore, in step (2) the memory coalescing unit in each
SM is able to decrease the number of memory transactions
required by the GPU threads to access the tasks array.

5.5 Task Insertion

Once Juggler resolves dependences and identifies new tasks

that are ready to execute, WTBs process each of the newly

freed child TASKs, identified by childTaskIndex, as follows:

(1) Using one of the policies explained in the next subsection,
decide the target WTB (target_w) to which the new task
should be assigned.

(2) Atomically increment queueEndIndex[target_w] to re-
serve a spot for the new task.

(3) Write childTaskIndex to the queues[] location of the
target WTB at the index reserved above.

(4) Atomically increment IQS[target_w] so that the target
WTB will see the new task on its next work cycle.

After all newly freed children tasks are assigned to other
WTBs, the WTB that processed the parent TASK updates its
local queueStartIndex value and also atomically decrements
its own IQS[i].

In their new work cycle, WTBs keep checking the IQS
array as long as the returned value, k, is greater than or
equal to zero. If all the values in IQS array are zero, it means
all WTBs are idle. Then the first WTB noticing this sets all
the other IQS values to -1. This forces all WTBs to terminate
their main loop at the beginning of their next work cycle.
When all WTBs exit, the cudaDeviceSync() right after the
runtime kernel launch on the host side is unblocked and the
execution is concluded.

5.6 Scheduling Policies

As in all other multiprocessor-based decentralized schedul-
ing schemes, queue insertion policies play an important role
in achieving load balance while also preserving data local-
ity. Juggler employs three different queue insertion policies
while deciding which WTB (i.e., target_w) to assign the next
"ready to execute" task:

Juggler-LRR: [Local round robin] Each worker keeps a
local counter in its private shared memory. The counter is
incremented by one for each child task freed by that worker,
and target_w is set equal to the current local counter’s value.

Juggler-GRR: [Global round robin] A single global counter
stored in the GPU memory is used to identify the target
worker. It is atomically incremented as workers insert new
tasks to others’ queues. GRR allows a perfectly even distribu-
tion across workers, if the task execution times are similar.

61

Juggler-LF: [Local first] This policy prefers to insert the
first freed task to a local queue and others to the neighboring
queues in an increasing fashion. LF prefers locality and does
not prioritize load balancing as an objective. However, the
incremental behavior allows a natural distribution.

Both round-robin-based approaches are good for load bal-
ancing; however, their locality benefits are limited. On the
other hand, LF enables spatial locality as well, and exploits
further benefits, at the cost of reduced load balance. Perfor-
mance implications of these policies are investigated in the
Evaluation section.

5.7 Memory Consistency

In the CUDA execution model, memory consistency is en-
sured by atomic operations. Since the Juggler device runtime
maintains multiple variables to manage distributed queues,
atomic updates alone are not sufficient to handle possible
memory races during queue operations (i.e., insertion and
retrieval). When two or more WTBs attempt to insert two
different tasks into the same queue, the target WTB might
see an inconsistent view of its own queue. For example:

= WTB; reserves a space in WTBg’s queue, by atomically in-
crementing queueEndIndex[0].

WTB, also reserves a space in WTBg’s queue, by atomically
incrementing queueEndIndex[0].

WTB, writes a new task t, into its reserved space.

WTB; atomically increments IQS[0] to signal WTB,.

WTBg reads IQS[0] and retrieves the task in the location
reserved by WTB;. «Inconsistency».

= WTB; writes a new task t; into its reserved space.

= WTB; atomically increments IQS[0].

In the scenario above, WTBy will read an incorrect task
object. It will be neither t; nor t,. One approach to prevent
such situations is to lock the queue of the WTB while assign-
ing a new task to it, during the insertion phase. However,
lock-based queue accesses have proven to be highly inef-
fective on GPUs [31]. Instead, Juggler ensures consistency
during the task retrieval phase. As explained in Section 5.3,
each WTB; performs a second check while reading its IQS[1i].
This check ensures that the returned IQS value matches the
difference between the global queueEndIndex[i] and the

=

{1}

// Inspection code related functions
initAppContext_H(appContext_h,nTasks,nEdges);
int addTask(appContext_h,kernelType);
addDependency (appContext_h,srcTaskIndex,dstTaskIndex) ;
; processOutDep(appContext_h,taskIndex,...);

6 processInDep(appContext_h,taskIndex,...);

// Device initialization related host functions
8 initRtContext_D(appContext, rtContext);

9 initAppContext_D(appContext_h,appContext_d);

10 // Main entry point to the Juggler runtime

11 __global__ void runtime(appContext, rtContext);
12 // App kernel, generated during transformation.

1
2
3
4
5

13 __device__ void app_kernel(task,appContext,dynContext);

Listing 7. Juggler Host & Device APL

Juggler: A Dependence-Aware Task-Based Execution Framework

PPoPP 18, February 24-28, 2018, Vienna, Austria

Application | Description # tasks | A parallelism

DT-WARP Dynamic time warping: Two time series are warped to find an optimal match. The algorithm | 5184 1-72
creates an intermediate 2D matrix and dynamically iterates over it.

HEAT-SIM Heat simulation: Simulation of heat over elements in a 2D surface. Calculates a single time | 8100 1-90
step and relies on elements calculated in previous and current steps.

INT-HIST Integral histogram: A progressive image processing algorithm to calculate histograms. It is | 8100 1-90
based on wavefront propagation.

JACOBI Jacobi iteration: Time-based iteration of a five-point stencil over a 2D matrix. Involves two | 3600 900
separate functions working on the same data in the dependence order.

LU-D LU decomposition: A common operation in linear algebra, which factors a matrix as the | 1240 1-196
product of its lower and upper triangular matrices.

SA-TABLE Summed area table: A popular imaging algorithm that is used to generate sum of values in | 8100 90
a rectangular subset of grid.

SM-W Smith Waterman: Bioinformatics-based string matching algorithm to find similar patterns | 5184 1-72
between two input gene sequences.

Table 1. Kernels used in our evaluation

local queueStartIndex values. If the difference and the IQS
values do not match, this indicates that concurrent writes
are in progress, and the WTB needs to wait until the values
match. During our experiments with repetitive runs, we have
ensured that the control scheme above successfully ensures
memory consistency of Juggler’s runtime operations.

5.8 Runtime API

Juggler is transparent to programmers and does not require
them to explicitly call the Juggler interfaces. However, Jug-
gler can also be incorporated by any application manually
via the APIs shown in Listing 7. These operations have pre-
viously been explained in Section 4, and we leave the listing
as a reference for users.

6 Evaluation

This section evaluates the performance of the Juggler run-
time. We explain the tested platform and the applications,
and then we elaborate on performance analysis.

6.1 Experimental Setup

Applications: We used seven commonly used kernels in sci-
entific computations. All of them employ functional and/or
data-based dependences. Table 1 lists these kernels along
with their brief descriptions and the total number of the
tasks they employ in our runs. The last column shows the
minimum and maximum amount of task-level (i.e., SM) par-
allelism that an application can exploit. For all applications,
we used the largest amount of global memory permitted by
cudaMalloc.

Methodology: We have tested two versions of each ap-
plication:

(1) Global barriers: This is the baseline version in native
CUDA and uses separate synchronous kernel launches to
ensure that data dependences are satisfied. We have adopted
the implementations previously published in [7] and com-
pared them against Juggler.

62

(2) Juggler: For this version, we first ported the kernels
to use OpenMP 4.5 tasking and off-loading constructs. Dur-
ing this process, we have also benefited from the OpenMP
based implementations presented in [19]. Then, we ran our
modified version of OpenARC to convert the OpenMP code
into CUDA. We tested Juggler with three different insertion
policies, as described in the previous section: Juggler-LRR,
Juggler-GRR, and Juggler-LF.

Reported results for Juggler-{LRR,GRR,LF] include kernel
execution times plus all host- and device-related overhead
additionally introduced by Juggler. This overhead includes
the times for inspection code execution, CSR graph creation,
application and device context initialization & transfers, task
graph transfer, device-side dependence resolution, and queue
operations. We excluded the original data staging and copy
phases of the applications from the execution times since
they are common to both global barriers and Juggler versions.

Platform: We compiled both versions using nvcc of CUDA
8.0. We ran our experiments on a single NVIDIA Tesla P100
GPU with 12 GB HBM2 global memory and 56 SMs. We
have set total number of workers, ntWTB, to a multiple of the
number of SMs, and the cofactor is determined based on the
resource usage of each application. We executed every bench-
mark five times for each of the four versions and reported the
average. We used nvprof and wall clock to measure timings.

6.2 Results

Execution time: As our main experiment, we measure the
speedup obtained by Juggler. We take the global barrier ap-
proach as the baseline and report the speedup results in
Figure 4. The numbers above global barrier bars are for ref-
erence only and they are the actual kernel execution times
of the global barrier version, in seconds. We also provide the
task distribution variances across Juggler policies in Figure 5
for a better understanding and justification of the main re-
sults. The latter figure shows the lowest, highest, and average
values of the differences between the workers’ maximum and

PPoPP ’18, February 24-28, 2018, Vienna, Austria Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan

X Global Barriers
1.4

= Juggler-LRR % Juggler-LF %= Juggler-GRR

%9
79
E

87

AR

SILLLLL LSS L7777 77777171
s s e s e e
CALLLLLLS LSS/ A7/ /74859
e e e e e e e

SSLLSLSS LIS LSS/
ANNNNANNNNNNANNAN

Ry
%,
<

(/‘O

Figure 4. Speedup obtained by the Juggler runtime

minimum number of tasks assigned, across 5 runs. Lower and
closer values mean that the scheduler consistently balanced
the workload across workers, whereas higher and distant
values indicate the load was not balanced and the results
vary greatly across each run.

Overall, Juggler-GRR improves performance up to 31%
when compared to the global barrier approach, and it falls
under the baseline only for JACOBI, with a 6% slowdown.
Multiple observations have been derived from the results:

Observation 1: Juggler-GRR demonstrates stable perfor-
mance in all cases by providing an optimal load distribution.
GRR exploits the full benefits of task-based execution by
keeping all workers busy most of the time, despite varying
amounts of parallelism. Increased utilization demonstrates
the validity of the initial motivation we built against global
barriers. On the other hand, LF is better than LRR in half of
the cases. Although LRR performs better in load distribution,
locality benefits provided by LF are beter. That being said,
the optimal load balance (i.e., GRR) always provides the best
results, regardless of locality.

Observation 2: JACOBI is the only exceptional case where
Juggler provides no performance improvement. Each JACOBI
iteration employs two types of kernels, copy and compute,

+ Highest Dev

A Lowest Dev = Avg Dev

Tasks deviation per worker

v 5
+ + + T

5

0 = e % = % e e
ESEESEESEESEESEESEESE
- @4 @5 6|4 o= o/ /9 ©
DT-WARP| HEAT |INT-HIST| JACOBI |SA-TABLE| SM-W LU-D

Figure 5. Per worker task load deviation

63

and all the TBs (i.e., tasks) within each kernel can execute in
parallel. The dependences are only across different kernels
operating on the same block; therefore, the number of tasks
that can be executed in parallel is at least 900, at all times.
JACOBI is an example where task-based execution provides
no benefit, and 6% slowdown by GRR corresponds mostly
to the in-device task-management overhead. LF performs
significantly slower, because batch insertion of tasks causes
a biased inclination towards local-WTB assignment, hence
eventually increasing the load imbalance.

Observation 3: LRR and LF perform worse than global bar-
riers in three other cases: DT-WARP, INT-HIST, and SM-W.
These applications, differently from others, employ addi-
tional array accesses (i.e., time&gene sequences and a bin
for histogram values), which in turn puts additional traf-
fic on the interconnect. The global memory operations on
which Juggler runtime relies to manage communications are
adversely affected by the increased traffic, therefore caus-
ing additional overhead. LU-D, on the other hand, employs
four different kernels with diverse computational require-
ments along with a vastly varying amount of parallelism.
This causes a significant slowdown for LF, which may overas-
sign tasks to a specific WTB and cause a crucial bottleneck
for the remaining dependences. GRR is still able to improve
the performance over global barriers, in these cases as well.

L2 cache misses: To better understand how Juggler im-
proves locality, we also measured the L2 cache write/read
miss rates, as shown in Figure 6, using NVIDIA’s nvprof util-
ity. We used the write&read variations of two event types:

e 12_subpO_{write|read}_sector_misses

e 12_subpO_total_{write|read}_sector_queries

The results show that, despite the contamination caused
by Juggler runtime operations (i.e., global memory accesses),
LF policy clearly reduces percentage of read misses. On the
other hand, GRR shows a moderate amount of improvement
over global barriers due to the temporal locality exploited by
child—parent dependences. As mentioned previously, since
the amount of maximum parallelism in JACOBI is signifi-
cantly larger, the benefits of locality are not observable for
this application.

—&— Juggler-LRR Juggler-LF —A—Juggler-GRR —%—Global Barriers
1 1
0.8 0.8
0.6 0.6
0.4 . 4 \v/.\‘ 0.4
0.2 0.2
0 o [Ae—a® —
&gﬁ/\’ \i%\ g “O%lv%\%%®§ \09 @vqg/\’%\ig\ \%«VQ’OQ)\/\V <$\§ VO/Q
0«, Q\\?. R Nd LF: 0/\' Q&v D L)?:

Figure 6. L2 cache miss rates for writes(left) and reads(right).

Juggler: A Dependence-Aware Task-Based Execution Framework

Juggler-LF ——Juggler-LRR —&—Juggler-GRR —<—Global Barriers

/

15

— 2500

=R N
o w o
o O O
o O o

(%4
o
o

Execution Time (msecs

o

20 25 30 35

Total Tasks (thousands)

o

5 10

Figure 7. Jacobi execution as the task counts increase

Scalability: We have used JACOBI iteration to observe
the effects of increasing total task count using a larger num-
ber of time iterations. For other applications, increasing the
number of tasks required more data to be allocated; how-
ever, this was not possible due to device limits. We varied the
number of tasks for JACOBI from 3,600 to 32,400 and showed
the execution times in Figure 7. We observe that LRR and
GRR are on par with global barriers and are able to main-
tain performance at a linear slope. On the other hand, the
imbalance caused by LF worsens as the task counts increase.

7 Additional Related Work

Early studies [4, 13] developed high-level task management
frameworks to distribute a workload across heterogeneous
processors including CPUs and GPUs. These schemes stay at
a coarse-granular level and treat the GPU as a single process-
ing entity. Finer granular scheduling solutions [8, 14, 15, 23,
27] proposed schemes that assign tasks into multiple streams
attached to CPUs and GPUs. While these solutions exploit
concurrent kernel execution on GPUs via asynchronized
streams and pipelines, they do not schedule tasks at the SM
level, hence failing to exploit a true SM-aware task-based
execution scheme. Another class of study, warp specializa-
tion [5, 6] addresses the issues caused by intra-SM barriers
(syncthreads()), inter-SM level global synchronization is
left unaddressed.

Study in [17] proposed locality-aware hardware TB sched-
ulers but failed to consider the dependences. Other HW solu-
tions [1, 21, 28, 29] introduced special hardware to manage
dependences. However, the cost of maintaining dependence-
related data structures in HW for actual scientific applica-
tions would be impractically high as the data sizes go beyond
the limits of the simulation environment. A few software-
based approaches [9, 21] have adapted existing CPU-oriented
task models like Cilk and CUDA-DP to represent dynami-
cally created in-GPU tasks. Others [12, 30] built compiler
techniques to detect dependences statically via loop analysis.

Only a handful of works [10, 16, 22, 33] have brought the
task execution paradigm into a finer granular level where
each SM is treated as a stand-alone processing unit. These
studies operate in a consumer—producer fashion where the

64

PPoPP 18, February 24-28, 2018, Vienna, Austria

scheduler running on the host side sends tasks to the GPU
as their dependences are resolved. The performance of this
approach is highly limited by the slow memory transfers
over PCI-e bus. Juggler, on the other hand, operates on HBM2
memory, which is tens of times faster.

In-GPU dependence resolution has been considered by
only two studies [25, 26], to the best of our knowledge. These
papers propose loosely defined abstract programming tech-
niques and manual code modifications, which are limited to
one or two applications. Therefore, they are far from being
a practical frameworks for real-life applications.

8 Conclusion

In this study we have proposed Juggler, a new, dynamic task-
based execution scheme for GPGPU applications with data
dependences. Different from previous studies, Juggler im-
plements an in-GPU runtime for applications with OpenMP
4.5-based dependences. The runtime uniquely employs in-
GPU dependence resolution and task placement. Our ex-
perimental evaluation of seven scientific kernels with data
dependences on an NVIDIA Tesla P100 GPU showed that
Juggler improves kernel execution performance up to 31%
when compared to global barrier based implementation.

Our results demonstrate that the conventional GPGPU pro-
gramming paradigms relying on grid-based execution with
global synchronization can be replaced with DAG-based,
dependence-aware task processing to increase the perfor-
mance of scientific applications.

Acknowledgements

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nu-
clear Security Administration. This material is based upon
work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research
under contract number DE-AC05-000R22725. This manu-
script has been authored by UT-Battelle, LLC under Con-
tract No. DE-AC05-000R22725 with the U.S. Department of
Energy. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive,
paid-up, irrevocable, worldwide license to publish or repro-
duce the published form of this manuscript, or allow others
to do so, for United States Government purposes. The De-
partment of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE
Public Access Plan.

This work was also partially supported by NSF Grants
CCF-1423108, and CCF-1513201 given to University of Cal-
ifornia, Riverside. We thank Matt Martineau and Simon
Mclntosh-Smith from University of Bristol for providing
their code for some of the OpenMP based kernels.

PPoPP ’18, February 24-28, 2018, Vienna, Austria Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan

References

(1]

(8]

(10]

(11]

(12]

(13]

[14]

[15]

(17]

Amir Ali Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli,
Laxmi Narayan Bhuyan, and Daniel Wong. 2017. Wireframe: Support-
ing Data-dependent Parallelism Through Dependency Graph Execu-
tion in GPUs. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO °17).

E. Agullo, C. Augonnet,]. Dongarra, M. Faverge, H. Ltaief, S. Thibault,
and S. Tomov. 2011. QR Factorization on a Multicore Node Enhanced
with Multiple GPU Accelerators. In 2011 IEEE International Parallel
Distributed Processing Symposium (IPDPS’11).

Timo Aila and Samuli Laine. 2009. Understanding the Efficiency of
Ray Traversal on GPUs. In Proceedings of the Conference on High Per-
formance Graphics (HPG ’09).

C. Augonnet, S. Thibault, R. Namyst, and P.A. Wacrenier. 2009. StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures. In Euro-Par 2009 Parallel Processing (Euro-Par "09).
Michael Bauer, Henry Cook, and Brucek Khailany. 2011. CudaDMA:
Optimizing GPU Memory Bandwidth via Warp Specialization. In Pro-
ceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC ’11).

Michael Bauer, Sean Treichler, and Alex Aiken. 2014. Singe: Leveraging
Warp Specialization for High Performance on GPUs. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’14).

Mehmet E. Belviranli, Peng Deng, Laxmi N. Bhuyan, Rajiv Gupta, and
Qi Zhu. 2015. PeerWave: Exploiting Wavefront Parallelism on GPUs
with Peer-SM Synchronization. In Proceedings of the 29th ACM on
International Conference on Supercomputing (ICS ’15).

Javier Cabezas, Lluis Vilanova, Isaac Gelado, Thomas B. Jablin, Nacho
Navarro, and Wen-mei W. Hwu. 2015. Automatic Parallelization of
Kernels in Shared-Memory Multi-GPU Nodes. In Proceedings of the
29th ACM on International Conference on Supercomputing (ICS ’15).
Guoyang Chen and Xipeng Shen. 2015. Free Launch: Optimizing GPU
Dynamic Kernel Launches Through Thread Reuse. In Proceedings of
the 48th International Symposium on Microarchitecture (MICRO 15).
L. Chen, O. Villa, S. Krishnamoorthy, and Guang R Gao. 2010. Dynamic
load balancing on single-and multi-GPU systems. In 2010 IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS ’10).
T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin. 2013. XKaapi: A
Runtime System for Data-Flow Task Programming on Heterogeneous
Architectures. In 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing (IPDPS ’13).

R. Govindarajan and Jayvant Anantpur. 2013. Runtime Dependence
Computation and Execution of Loops on Heterogeneous Systems. In
Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’13).

E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard. 2010. Multi-
GPU and Multi-CPU Parallelization for Interactive Physics Simulations.
In Euro-Par 2010-Parallel Processing (Euro-Par, 10).

Huynh Phung Huynh, Andrei Hagiescu, and Rick Siow Mong Goh.
2012. Scalable framework for mapping streaming applications onto
multi-GPU systems. In Proceedings of the 17th ACM SIGPLAN sympo-
sium on Principles and Practice of Parallel Programming (PPoPP ’12).
Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,
Chunling Hu, and Keshav Pingali. 2014. Adaptive Heterogeneous
Scheduling for Integrated GPUs. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation (PACT ’14).
Scott J. Krieder, Justin M. Wozniak, Timothy Armstrong, Michael
Wilde, Daniel S. Katz, Ian T. Foster, and Ioan Raicu. 2014. Design
and Evaluation of the Gemtc Framework for GPU-enabled Many-task
Computing. In Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing (HPDC ’14).

M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. 2014.
Improving GPGPU resource utilization through alternative thread

65

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

block scheduling. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA ’14).

Seyong Lee and Jeffrey S. Vetter. 2014. OpenARC: Open Accelera-
tor Research Compiler for Directive-based, Efficient Heterogeneous
Computing. In Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing (HPDC ’14).
Matt Martineau, Simon McIntosh-Smith, Carlo Bertolli, Jacob, et al.
2016. Performance analysis and optimization of Clang’s OpenMP 4.5
GPU support (PMBS ’16).

Pinar Muyan-Ozgelik and John D. Owens. 2016. Multitasking Real-time
Embedded GPU Computing Tasks. In Proceedings of the 7th Interna-
tional Workshop on Programming Models and Applications for Multicores
and Manycores (PMAM ’16).

Marc S Orr, Bradford M Beckmann, Steven K Reinhardt, and David A
Wood. 2014. Fine-grain task aggregation and coordination on GPUs.
In 41st International Symposium on Computer Architecture (ISCA ’14).
Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray,
and Emmett Witchel. 2011. PTask: Operating System Abstractions to
Manage GPUs As Compute Devices. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (SOSP ’11).

Daniel Sanchez, David Lo, Richard M Yoo, Jeremy Sugerman, and Chris-
tos Kozyrakis. 2011. Dynamic fine-grain scheduling of pipeline par-
allelism. In Parallel Architectures and Compilation Techniques (PACT),
2011 International Conference on (PACT ’11).

Fengguang Song, Asim YarKhan, and Jack Dongarra. 2009. Dynamic
task scheduling for linear algebra algorithms on distributed-memory
multicore systems. In Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis (SC "09).

Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswies-
ner, Michael Kenzel, and Dieter Schmalstieg. 2012. Softshell: Dynamic
Scheduling on GPUs. In ACM Trans. Graph., Vol. 31.

Stanley Tzeng, Brandon Lloyd, and John D Owens. 2012. A GPU
Task-Parallel Model with Dependency Resolution. Computer (2012).
U. Verner, A. Schuster, and M. Silberstein. 2011. Processing data streams
with hard real-time constraints on heterogeneous systems. In Proceed-
ings of the International Conference on Supercomputing (ICS ’11).

J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili. 2016. LaPerm:
Locality Aware Scheduler for Dynamic Parallelism on GPUs. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA ’16).

Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. 2016.
Simultaneous Multikernel GPU: Multi-tasking throughput processors
via fine-grained sharing. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA ’16).

Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. 2015.
Enabling and Exploiting Flexible Task Assignment on GPU Through
SM-Centric Program Transformations. In Proceedings of the 29th ACM
on International Conference on Supercomputing (ICS ’15).

Shucai Xiao and Wu-chun Feng. 2010. Inter-block GPU communication
via fast barrier synchronization. In 2010 IEEE International Symposium
on Parallel & Distributed Processing (IPDPS ’10).

Shengen Yan, Guoping Long, and Yunquan Zhang. 2013. StreamScan:
Fast Scan Algorithms for GPUs Without Global Barrier Synchroniza-
tion. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’13).

Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann.
2017. Pagoda: Fine-Grained GPU Resource Virtualization for Nar-
row Tasks. In Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’17).

Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, and Wen-
guang Chen. 2017. Versapipe: A Versatile Programming Framework
for Pipelined Computing on GPU. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’17).

Juggler: A Dependence-Aware Task-Based Execution Framework

A Artifact Description
A.1 Abstract

Artifact described in this section includes the source code
for Juggler host and device runtimes and the sources for the
applications used in our evaluation.

The scripts to compile the source code, generate inputs,
execute binaries, validate results, and parse the outputs are
also included in the artifact and explained below in detail.

A.2 Description
A.2.1 Check-list (artifact meta information)

e Hardware: NVIDIA Tesla P100 or newer GPU with at least
12GB of memory, and x86-64 modern CPU.

e Program: CUDA 8.0 APIs and above.

e Compilation: NVIDIA nvcc version 8.0 and aboce.

e Binary: CUDA host(x86-64) and device executable. Linux bi-
nary is included. Source code and scripts to regenerate the
binaries are also included.

e Data set: Dynamically generated data, prior to the execution.

e Runtime environment: CUDA 8.0 APIs and drivers. They
are included with CUDA 8.0 toolkit distribution.

e Output: Verification results and detailed timings such as exe-
cution times and runtime overhead.

o Experiment workflow: Linux bash scripts.

o Publicly available?: Yes

A.2.2 How software can be obtained (if available)
The source code for Juggler host & device runtime and
the experimented applications (both baseline and Juggler-
integrated version) can be accessed via:

https://code.ornl.gov/fub/juggler

A.2.3 Hardware dependencies

We performed our experiments on an NVIDIA P100 GPU.
While Juggler is compatible with Kepler architecture and
later, the provided artifact will work only for Pascal archi-
tecture or later, with at least 12GB of memory.

A.2.4 Software dependencies

CUDA 8.0 toolkit is required for compilation and profiling.
At the time of CUDA driver installation, GCC 5.2 was in-
stalled on the system. To run the scripts, bash and egrep are
sufficient. The scripts assume that CUDA_HOME is properly set
to the installation directory of CUDA. The default location:

$ export CUDA_HOME=/usr/local/cuda
A.2.5 Datasets
Due to large sizes, each application dynamically generates
and populates the input dataset, as part of the initialization.

A.3 Installation
Clone Juggler from the ORNL repository:

$ git clone https://code.ornl.gov/fub/juggler.git
$ export JUGGLER_HOME=$(pwd)/juggler

66

PPoPP 18, February 24-28, 2018, Vienna, Austria

A.4 Experiment workflow

To repeat the main experiments presented in the evaluation
section, we have created a script named exp. It is located un-
der $JUGGLER_HOME/build and the parameters to the script
are as follows:

exp {scriptMode} {outFilePrefix} {runGB} {runJG} {nRuns} {nProfRuns}

To repeat the main experiments presented in Figures 4
and 5, run:

$ cd $JUGGLER_HOME/build

$ bash exp @ output 1 151

When run with scriptMode=0, exp script compiles each
application for each scheduling policy; then runs each of
them five times (i.e., nRuns=5) for global barriers (i.e., runGB=1)
and also five times for the Juggler integrated versions (i.e.,
runlG=1). It also performs an additional run with profiling
enabled (i.e., nProfRuns=1). The program output for each
application is written into separate files prefixed by out-
FilePrefix.

A.5 Evaluation and expected result

Execution of the exp script with the parameters above will
produce a series of output files, named output . $APPNAME and
output.PROF.$APPNANME, for each application. The same exp
script can also be used in parsing mode (i.e., scriptMode=1)
to parse these output files and combine the values from all
runs in a tab separated value (TSV) format.

1. To list the kernel execution times (i.e., the values
used to draw Figure 4) for all seven applications, in
separate columns:

$ bash exp 1 output execTime 2 formattedResultsl.tsv

Parsed values will be written into formattedResultsl
.tsv, in a tabular format. There will be seven columns
in total, one for each application. The number of rows
in the tsv file will be equal to nRuns X 4 (i.e., 20, when
main experiment is run five times). The first 15 rows
will be for LRR, GRR, and LF, respectively, in groups of
five. The last five rows will be for global barriers.

2. To see verification results against serial execution:

$ bash exp 1 output check 2 formattedResults2.tsv

The parsed output will be written into the formatte-
dResults2.tsv file, and the values will be either SUC-
CESS or FAIL.

3. To parse task load deviations, run:

$ bash exp 1 output minTaskLoad 2 formattedResults3.tsv

$ bash exp 1 output maxTaskLoad 2 formattedResults4.tsv
Figure 5 in the paper is drawn as "HIGH-LOW-CLOSE"
chart in Microsoft Excel, where HIGH, LOW and CLOSE
are the highest, lowest and average values, respectively,
of the differences between maxTaskLoad and maxTaskLoad,
across five runs.

PPoPP ’18, February 24-28, 2018, Vienna, Austria Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan

A.6 Experiment customization

Number of runs for each type of run in the main experi-
ment can be modified by changing the input parameters of
exp script, as explained in section A.4.

Additionally, if only a specific subset of applications is
desired to be tested, the values in the bash array, named
$APPS, in the exp script can be modified.

More information can be parsed from the output files by
providing the key string and column number in the value
parser (i.e., "exp 1"). A few examples:

1. Cache miss data:

$ bash exp 1 output.PROF write_sector_misses 7 formatted.tsv
$ bash exp 1 output.PROF write_sector_queries 7 formatted.tsv
$ bash exp 1 output.PROF read_sector_misses 7 formatted.tsv

$ bash exp 1 output.PROF read_sector_queries 7 formatted.tsv

2. Host runtime and inspection loop overhead breakdown:

$ bash exp 1 output initAppContext_H 2 formatted.tsv
$ bash exp 1 output initAppContext_D 2 formatted.tsv
$ bash exp 1 output initRtContext_ D 2 formatted.tsv
$ bash exp 1 output inspectionLoop 2 formatted.tsv

$ bash exp 1 output buildCSR 2 formatted.tsv

3. Total application runtime, including user data initializa-
tion and transfers:
$ bash exp 1 output totalTime 2 formatted.tsv

Compiling and running a single application: In our test
suite, applications are distinguished with compiler directives
to optimize the resource usage for the ones that share com-
mon kernels. Similarly, the Juggler runtime requires a re-
compilation if internal runtime parameters (e.g., scheduling
policy) are changed.

1. To recompile Juggler for the desired application and

scheduling policy:

$ cd $JUGGLER HOME/build
$ bash switchAPP {DTW|HEAT|INT|JACOBI |SAT|SW|LUD} {LRR|GRR|LF}}

2. To run the compiled application with the Juggler run-
time:
$ cd $IJUGGLER_HOME/build
$./OMP_CUDART -n {matrix_size} -b {block_size} -d {1]2} [-c]
The -d parameter indicates the run mode, which is 1
for Juggler, and 2 for global barriers. The optional -
c parameter enables verification against serial version
and compares the two outputs. By default, - ¢ is enabled.

A.7 Notes

For up-to-date instructions, please follow the README file
under the root directory of the repository.

67

	Abstract
	1 Introduction
	2 Motivation
	2.1 Task-Based Execution on GPUs
	2.2 Design Considerations

	3 Juggler Framework Overview
	4 Juggler: Compiler Transformations
	4.1 Identifying Target Regions Containing Tasks
	4.2 Inspection Code & Application Context
	4.3 Task Creation
	4.4 Dependence Processing

	5 Juggler: Runtime
	5.1 Worker TBs
	5.2 Distributed Queues
	5.3 Task Retrieval
	5.4 Dependence Resolution
	5.5 Task Insertion
	5.6 Scheduling Policies
	5.7 Memory Consistency
	5.8 Runtime API

	6 Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Additional Related Work
	8 Conclusion
	References
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result
	A.6 Experiment customization
	A.7 Notes

