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A B S T R A C T

Many state-of-the-art Deep Neural Networks (DNNs) have substantial memory requirements. Limited device
memory becomes a bottleneck when training those models. We propose ParDNN, an automatic, generic, and
non-intrusive partitioning strategy for DNNs that are represented as computational graphs. ParDNN decides a
placement of DNN’s underlying computational graph operations across multiple devices so that the devices’
memory constraints are met and the training time is minimized. ParDNN is completely independent of the
deep learning aspects of a DNN. It requires no modification neither at the model nor at the systems level
implementation of its operation kernels. ParDNN partitions DNNs having billions of parameters and hundreds of
thousands of operations in seconds to few minutes. Our experiments with TensorFlow on 16 GPUs demonstrate
efficient training of 5 very large models while achieving superlinear scaling for both the batch size and training
throughput. ParDNN either outperforms or qualitatively improves upon the related work.
1. Introduction

Deep Learning (DL) is being increasingly applied in a wide range of
scientific and engineering domains. DNNs have doubled in size roughly
every 2.4 years due to the ability of larger models, deeper or wider
or both, to produce results with higher accuracy on more complex
tasks [1]. This growth is expected to continue in the coming years [2,3].
The deepening and/or widening of these models comes at a cost of
larger memory required to store the parameters and the intermediate
results [4]. An example from computer vision field is Wide Residual
Network [5], a widened variant of the well-known Resnet [6], widening
the model 8 times increases the number of its parameters ∼60 times [5]
leading to a substantial increase in the memory requirements. The
same trend shows up in the NLP field where deep-stacked LSTMs [7]
or attention layers [8] often give more accurate results compared to
shallower models. Introducing residual connections among the layers
in a stack enabled the training of very deep encoder and decoder
networks, e.g. larger versions of the Transformer model [8], with newer
models pushing the number of parameters up to 𝑂(10𝐵) [9,2].

Different approaches have been proposed to tackle the issue of
training very large models on multiple devices. One approach is to
work on the model level, where the model is partitioned across multiple
devices through model, pipeline, channel parallelism, or combinations
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of them [10–14,9,15]. Even though these methods are successful to
some extent, they suffer from either: (a) being not generic as they target
a specific class of DNNs, (b) introduce non-negligible memory overhead
to maintain the statistical efficiency, or (c) can incur a high implemen-
tation cost and necessitate detailed understanding of the DNN model for
an accurate cost model. Another approach works at the systems level
by partitioning the computational graph that represents the operations
in a neural network model and distributes it over multiple devices.
The existing work in this direction has some limitations. The method
proposed in [16] has a restricted applicability because it relies on a
descriptive language to specify computations and cannot describe all
the operations used in DL. Others propose a reinforcement learning-
based approach, which is impractical in many cases due to substantial
resource and time requirements [17,18]. In [19] authors propose a set
of practical, generic, and low overhead heuristics to partition the DNN
graph. They concluded that critical path-based approaches yield the
best performance. However, their evaluation is based on an event-based
simulation rather than on an actual DL framework.

We adopt the system-level approach and propose a generic, ef-
ficient, and non-intrusive partitioning strategy (ParDNN) that avoids
the drawbacks of the related work. ParDNN directly works on the
computational graph representation of the neural network adopted
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by the most popular general-purpose DL frameworks such as Tensor-
Flow [20] and MXNet [21]. Operating on the graph level has three
main benefits. First, it provides a fine-grained view of the model, which
gives more parallelization options and allows better load balancing and
resource utilization. Second, it isolates our strategy from the details
of the learning process, what provides more generality and guarantees
unaffected statistical efficiency [14] of the model. Third, working at
the level of the graph enables us to leverage decades of work on graph
partitioning and static scheduling (as will be discussed later).

ParDNN’s strategy is composed of two main steps. First, we cluster
the operation-nodes of the computational graph into 𝐾 partitions,
where 𝐾 represents the number of the available devices. The objective
of this step is to reduce the end-to-end runtime by assigning the
operations on the partitions such that the computational loads are
balanced and the communication is minimized. In the second step, we
check whether the memory constraints are met in each partition. If they
are not, we reassign some operations to different partitions such that
the reassigned operations have the least possible perturbed effect on
the placement generated by the first step but at the same time meet
the memory constraints.

Most existing graph partitioning libraries are designed to handle
undirected graphs. Extensive experimenting done in [18,17] with state-
of-the-art graph partitioning-based tools, such as Scotch static map-
per [22,23] and MinCut optimizer, shows that they result in 2 to 10
times slowdown when applied on directed graphs of DL models. Our
algorithm outline is inspired by the principle of the multilevel approach
used in graph partitioning [24] but the design and algorithmic details
of ParDNN includes a mix of variants of static scheduling heuris-
tics [25] that are mutated to reduce the time complexity, and novel
techniques to address some shortcomings in the existing ones [26,27].
Our contributions are:

• We propose a novel computational graph partitioning method
that enables training models with large memory consumption on
a set of devices with limited memory.

• We conduct extensive related work comparisons with large DNNs:
(a) ParDNN outperforms other graph-based approaches such as
linear clustering [25] and a critical path-based method [19],
(b) ParDNN outperforms Mesh-TensorFlow, a state-of-the-art dis-
tributed training framework [28] as well as having qualitative
advantages over it by automating the partitioning and not re-
quiring model rewrite. (c) It generally outperforms redundant
recomputation methods (Gradient Checkpointing [29]).

• For models that do not fit into a single GPU’s memory, ParDNN
enables training models having up to 5.1 billion parameters using
only 4 GPUs. For models that barely fit into a single device
memory, it allows more efficient training by superlinearly scaling
the batch size, and in many cases, the training throughput.

• ParDNN’s overhead is negligible. For a graph having hundreds of
thousands of nodes representing DNNs with billions of parame-
ters, it takes ∼2 minutes to find a partition for 16 GPUs, while
training these models takes days or even weeks.

• To the best of our knowledge ParDNN is the first of its type that
permits the training of models that do not fit into a single device
memory while being generic due to (a) having zero dependency
and requiring no knowledge about the DL aspects of the models,
and (b) not requiring any modifications of the model or the
operation kernels.

2. Background

Modeling a computation as a directed graph has been adopted in
scheduling theory [30], in parallel programming and run-time environ-
ments [31–34], and recently in DL frameworks [20,21,35]. TensorFlow
uses a stateful dataflow graph to represent a computation. It extends
the classical dataflow graph model to allow maintaining and updating
2

Fig. 1. ParDNN overview.

the persistent state of some special nodes, branching, and loop control.
In a TensorFlow graph 𝐺 = (𝑉 ,𝐸), each node 𝑛 ∈ 𝑉 represents the in-
stantiation of an operation (e.g., matrix multiplication or convolution)
and it has zero or more inputs and zero or more outputs. Each edge
𝑒 ∈ 𝐸 represents a dependency between its incident nodes. Normal
edges represent the data flowing between the nodes, while special
edges, e.g. control dependencies, are used to enforce happens-before
relationships with no data flows along them [20].

Graph partitioning is, in general, defined as splitting the graph
𝐺(𝑉 ,𝐸) into 𝐾 disjoint subsets [36]. The constrained version of the
graph partitioning aims at partitioning in such a way that the sums of
the vertices weights in each set are as equal as possible, and the sum
of the weights of edges crossing between sets is minimized [24]. An
extension of general graph partitioning which aims to assign a set of
communicating tasks to processors is called static mapping [36]. Static
mapping does not consider the logical and temporal dependencies
of the tasks, it is assumed that all the tasks simultaneously coexist
throughout the program execution.

Finding a spatial and temporal assignment of the set of nodes in
a task graph 𝐺 = (𝑉 ,𝐸) onto a set of processors resulting in the
fastest possible execution, while respecting the precedence constraints
expressed by all 𝑒 ∈ 𝐸 is referred to as task scheduling problem [30].
The schedule length, makespan, is the completion time (𝐶𝑡) of the last
node in 𝐺 assuming that the graph execution starts at time 0. Where
𝐶𝑡(𝑛) is the time required to execute the operation represented by 𝑛
added to the time at which this operation starts to execute. The goal
is to minimize 𝐶𝑡𝑚𝑎𝑥, where 𝐶𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑛∈𝑉 𝐶𝑡(𝑛). Finding an optimal
schedule or static mapping is NP-hard [36,30].

3. ParDNN : A partitioning strategy for DNNs

ParDNN works at the computational graph level and offers a prac-
tical, non-intrusive, and generic method to partition a neural network
model on a set of processing elements (𝑃𝐸).

The main objective of ParDNN is to minimize 𝐶𝑡𝑚𝑎𝑥, the makespan
of the graph, while satisfying the memory capacity constraints of the
target processing elements. It is important to mention that ParDNN
does not have a runtime component. All the steps of ParDNN are done
ahead of time. After running ParDNN once, the resulting partitioning
can be used as long as the model parameters that affect the memory
consumption do not change.

Fig. 1 shows the overall process. ParDNN takes a computational di-
rected acyclic graph as an input, it annotates this graph with computa-
tion, communication, and memory consumption information gathered
using offline profiling. It adds an artificial source and sink node to the
graph. Using the collected data, ParDNN splits the graph into parts
to be mapped to processing elements. ParDNN outputs the mapping
information to be used by the execution engine of the DL framework
(e.g., TensorFlow).
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Table 1
Complexity of Each Step of ParDNN.

Step-1 Partition to minimize makespan

Graph slicing (inc. sorting) 𝑂(𝐾(|𝑉 | + |𝐸|))
Mapping 𝑂(|𝑉 | ∗ log2 |𝑉 |)

Step-2 Memory heuristic - I

TensorFlow scheduler emulator 𝑂(|𝑉 | + |𝐸|)
Memory consumption tracker 𝑂(|𝑉 |)
Overflow handler 𝑂(|𝑉 2

|)

Step-2 Memory heuristic-II

Residual Nodes movement and CP splitting 𝑂(|𝑉 |)

Overall ParDNN Complexity (w. Heuristic-I) 𝑂(|𝑉 |

2)

Overall ParDNN complexity (w. Heuristic-II) 𝑂(|𝑉 | ∗ 𝑙𝑜𝑔2(|𝑉 |) +𝐾|𝐸|)

Our strategy is divided into two major steps. Step-1 aims to ob-
ain a partitioning that has a minimal makespan. Step-1 is further
ivided into two stages. Stage-I, graph slicing splits the graph into

disjoint primary and 𝑆 disjoint secondary clusters. This splitting
nables working at a coarser level in the upcoming stages. Stage-II,
apping, merges these 𝑆 secondary clusters into the 𝐾 primary clusters
sing a novel mapping algorithm. In Step-2, we propose two alternative
euristics to overcome the memory overflow; one is threshold-based
nd the other is balancing-based. In heuristic-I, the result from Step-
is validated against the memory constraints of the given devices.

f the memory constraints are satisfied, the partition will be the final
utput. Otherwise, nodes are moved between the partitions until the
emory consumption by a processing element 𝑝𝑒 at any time 𝑡 ∈

0, 𝐶𝑡𝑚𝑎𝑥] is less than or equal to 𝑝𝑒’s memory capacity. On the other
and, heuristic-II tries to balance the memory consumption across
he available processing elements. Heuristic-I is fully applied in Step-

to avoid higher time and code complexity; applying it in Step-1
equires continuous backtracking as the movement of nodes affects the
emporal load balance and communication cost. Moreover, this gives
global view of the graph and wider range of moves to mitigate the
emory overflow. Heuristic-II is partially done in Step-1 as explained

n Section 3.2.2.
Table 1 summarizes the time complexity of each step of ParDNN.

The reported complexities after each step are relaxed ones and for
some stages a tighter bound maybe driven with amortized analysis.
In practice, the average running time of ParDNN on the DNN models
listed in Table 3 is roughly 2 min on a typical laptop processor, namely
an Intel i7-7600u CPU @ 2.80 GHz. Considering the training time of
those models is in the orders of days or even weeks, ParDNN offers
an extremely lightweight and practical approach to partition the DNN
graphs.

Next, we explain the details of each step along with the time
complexity. Table 2 summarizes the terms and notations for the ex-
planations.

3.1. Step-1: Partitioning to minimize makespan

This step aims at reducing the makespan of the graph. Before
presenting the details of the step, it is important to point its distinction
from both static task scheduling and static mapping. Unlike scheduling
algorithms, we do not specify an order of task execution; we rather
focus on spatially allocating the tasks on a set of processors while
addressing the locality-parallelism trade-off. The order of execution
decision is left to the runtime dynamic scheduler, e.g., TensorFlow
scheduler. Unlike static mapping, ParDNN considers the logical and
temporal dependencies between the tasks.

The size, (|𝑉 |), of a large DNNs’ computational graph is usually
in the order of hundreds of thousands and is projected to grow to
millions of operation-nodes [2]. As a result, efficiency and scalability
3

are essential features of any proposed solution. The multilevel method, l
Algorithm 1 Graph Slicing
In : K, Graph G
Out: pri_clusters[ ], sec_clusters[ ] ⊳ initially empty

1: 𝑗 ← 1
2: 𝑤_𝑙𝑣𝑙𝑠 ← compute_weighted_levels(𝐺)
3: while 𝐺 ≠ 𝜙 do
4: ℎ𝑒𝑎𝑣𝑖𝑒𝑠𝑡_𝑝𝑎𝑡ℎ ← find_heaviest_path(𝐺,𝑤_𝑙𝑣𝑙𝑠)
5: if 𝑗 ≤ 𝐾 then
6: 𝑝𝑟𝑖_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑗] ← ℎ𝑒𝑎𝑣𝑖𝑒𝑠𝑡_𝑝𝑎𝑡ℎ
7: 𝑤_𝑙𝑣𝑙𝑠 ← compute_weighted_levels(𝐺)
8: else
9: 𝑠𝑒𝑐_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑗 −𝐾] ← ℎ𝑒𝑎𝑣𝑖𝑒𝑠𝑡_𝑝𝑎𝑡ℎ

10: end if
11: 𝐺 ← 𝐺 − {ℎ𝑒𝑎𝑣𝑖𝑒𝑠𝑡_𝑝𝑎𝑡ℎ}
12: 𝑗 ← 𝑗 + 1
13: end while

the most widely used technique in graph partitioning, addresses the
scalability issue by grouping vertices together and dealing with groups
of vertices, rather than individual ones [36]. This grouping reduces the
problem size and allows good quality heuristics to be applied within
a reasonable time. Inspired by this method, we designed Step-1 of our
partitioner in two main stages.

3.1.1. Graph slicing
This stage groups the nodes of the graph into disjoint clusters. It

iteratively finds the critical path (𝐶𝑃 ) in the graph and removes 𝐶𝑃 ’s
nodes and their incident edges from the graph by marking them as
visited so that they are not explored in the following iterations. This
is repeated 𝐾 times and the resulting 𝐾 many 𝐶𝑃 s are called primary
clusters, which are the initial partitions assigned to different processing
elements. Hence, the terms primary cluster and 𝑝𝑒 are going to be used
interchangeably. After finding those primary clusters, the remaining
nodes are grouped into secondary clusters. A secondary cluster, which is

linear cluster [30], is either a single node or a path. All the secondary
lusters are identified and tagged until there is no node left on the graph
hat is not part of any cluster. Fig. 2(b) shows an example.

Algorithm 1 shows the pseudo-code of the graph slicing, which
akes device count 𝐾 and graph 𝐺 as inputs and outputs primary
nd secondary clusters. Line 2 computes the weighted level (𝑤_𝑙𝑣𝑙(𝑛))
or all the nodes in the graph. The heaviest path, (Line 4), is the
𝑃 when 𝑤_𝑙𝑣𝑙(𝑛) are recalculated. Finding the heaviest path is done
y traversing the graph using the computed 𝑤_𝑙𝑣𝑙𝑠 as priorities until
eaching a dead-end. After forming a 𝐶𝑃 , it is added to the primary
lusters and its nodes and edges are removed from the graph (Line 11).
nlike linear clustering [25], we obtain only 𝐾 many 𝐶𝑃 s, then we

top recalculating 𝑤_𝑙𝑣𝑙(𝑛) for the secondary clusters since computing
eighted levels is expensive. In Section 5.3.1 we demonstrate that
voiding this expensive computation does not harm the quality of the
esults. When weighted levels are not recalculated, 𝑓𝑖𝑛𝑑_ℎ𝑒𝑎𝑣𝑖𝑒𝑠𝑡_𝑝𝑎𝑡ℎ
ay not return a 𝐶𝑃 , rather returns a path of a heavy cost. Thus the

erm heaviest path refers to the heaviest path from the slicing algorithm
erspective, which is not necessarily the actual critical path. If a path
ould not be obtained, it returns a single node.
Complexity: The most expensive part of Algorithm 1 is computing

eighted levels for all the nodes. This operation performs a variant of
opological sorting and has time complexity of 𝑂(|𝑉 | + |𝐸|) [30]. It is
one 𝐾 times, resulting in an overall complexity of 𝑂(𝐾(|𝑉 | + |𝐸|)).
n linear clustering that would cost 𝑂(|𝑉 |(|𝐸| + |𝑉 |)) [37]. Given that
he priorities are already specified, finding the paths costs 𝑂(|𝐸|).1

1 The task graph is assumed to be connected graph, which means it has at
east 𝑛 − 1 edges.
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Table 2
Terminology used in this work.

Term Description

𝐺 = (𝑉 ,𝐸) Computational graph with vertex set 𝑉 , edge set 𝐸
𝐶𝑃 Critical path of a graph, the longest path in the graph considering computation and communication costs.
𝐶𝑡𝑚𝑎𝑥 Makespan of 𝐺, schedule length
𝑃𝐸, 𝑝𝑒 Set of processing elements, a processing element
𝐾 Number of processing elements (e.g., # of GPUs)
𝑐𝑜𝑚𝑝(𝑛) Weight of a node 𝑛; time required to execute that node on a processing element.
𝑚𝑒𝑚(𝑛) Memory consumption of outputs of a node 𝑛
𝑐𝑜𝑚𝑚(𝑒) Cost of an edge 𝑒; time required to communicate the data from the source node (operation) to the destination node

(operation).
𝑠𝑐 Secondary cluster, which is a node or a path
𝑐𝑜𝑚𝑚(𝑠𝑐) Total communication cost incurred by all edges that have one end in 𝑠𝑐
𝑡𝑙(𝑛) Node top level: length of the costliest path between the source node of the graph and the node 𝑛, excluding the node

𝑛. Where the length of a path, is the summation of the computation costs of the nodes on the path and the
communication cost of its edges ∑

𝑛∈𝑝 𝑐𝑜𝑚𝑝(𝑛) +
∑

𝑒∈𝑝 𝑐𝑜𝑚𝑚(𝑒)
𝑏𝑙(𝑛) Node bottom level: length of the costliest path between 𝑛 and the sink node including the node 𝑛
𝑤_𝑙𝑣𝑙(𝑛) Node weighted level: 𝑡𝑙(𝑛) + 𝑏𝑙(𝑛)
𝑠𝑝𝑎𝑛(𝑠𝑐) Time between the expected finish time of the last parent of the first node in a 𝑠𝑐, and the expected starting time of

the first child of the last node in that path. Last and first here mean topologically.
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑠𝑐) Summation of the weights of all nodes that can be executed within 𝑠𝑝𝑎𝑛(𝑠𝑐)
𝑠𝑡(𝑛) Starting time of node 𝑛, the time when 𝑛 is assigned to a 𝑝𝑒 to execute
𝑓𝑡(𝑛) Finish time of node 𝑛, the time when 𝑝𝑒 is done with executing 𝑛
𝑀𝑐𝑜𝑛𝑠(𝑝𝑒, 𝑡) Memory consumed by the processing element at time 𝑡
𝑀𝑝𝑜𝑡(𝑛, 𝑡) Memory potential of a node 𝑛 at time 𝑡. The summation of the memory occupied by the outputs of 𝑛’s direct ancestors

that are executed before 𝑡, and for which 𝑛 is the last direct descendant in its 𝑝𝑒. Plus 𝑛’s memory consumption if
𝑠𝑡(𝑛) ≤ 𝑡 ≤ 𝑓𝑡(𝑛)
Fig. 2. In the computational graph, edge weights indicate communication costs. All nodes are assumed to have a weight of 1 for simplicity. (a) Original computational graph.
b) Shows the slicing stage when there are two 𝑝𝑒(s). The obtained clusters are: {𝐴,𝐵,𝐸, 𝐼,𝑀,𝑂, 𝑃 ,𝑄}, {𝐶,𝐺, 𝐽 ,𝐾}, {𝐻}, {𝑁}, {𝐹}, {𝐷, 𝐿}. First two are primary clusters,
he other four are secondaries. (c) Locality First Lookahead Mapping: Secondary clusters sorted by their criticality, in decreasing order, are {𝐻}, {𝑁}, {𝐹}, {𝐷, 𝐿} (note that
ommunications inside a cluster are considered to be zero). {𝐻} is totally-communicating with a primary and there is enough unmapped work within its span (𝐿 and 𝐹 ) to cover
he temporal/local imbalance. {𝐹} is totally-communicating with a primary and its mapping does not cause an imbalance (keeping in mind that H is already mapped to the green
rimary). Both {𝐷, 𝐿} and {𝑁} are totally-communicating as well, but their mapping causes an imbalance and there is no unmapped work left within their spans to cover. (d)
evel Aware Load Balancing: {𝐷, 𝐿} and {𝑁} are mapped according to the criteria in Eq. (1). In th case of {𝑁} there is a tie (Eq. (1) result is 2 for both of the primaries), so it
s assigned to the one with which it communicates the most. The makespan is 13..
3
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his is because each node is visited at most once, since the nodes are
emoved from the graph (marked as visited) once they join a path. From
ach node deciding the next to visit entails picking its highest priority
eighbor, which requires checking its adjacent nodes’ priorities. Since
he edges are removed from the graph with their incident vertices as
ell, no edge will be visited twice. Hence, overall there are 𝑂(|𝐸|)

teps. It is important to note that all the graphs we experimented are
parse, having |𝐸| < |𝑉 | log(|𝑉 |).
4

i

.1.2. Mapping
This stage attaches the secondary clusters to the primaries with the

oal of obtaining a partition with minimal makespan by addressing
he locality parallelism trade-off. This process is referred to as cluster
apping in the scheduling literature. There are mapping heuristics such
s wrap cluster merging [47], list scheduling based cluster assign-
ent [48], and Guided Load Balancing (GLB) [27]. In a comprehensive

valuation of scheduling and cluster merging algorithms in [37], GLB
s shown to produce the best result. However, GLB assumes that its
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Table 3
Specifications of models datasets.

Model/Dataset Acronym #Layers HSD SL #Para. #Graph
(109) nodes

RNN for Word-Level Language [38]/Tiny Shakespeare [39] Word-RNN 8 2048 28 0.34 10578
Word-RNN-2 32 2048 25 1.18 39074

CHSD ED

Character-Aware Neural Language
Models [40]/Penn Treebank (PTB) [41]

Char-CRN 8 2048 15 0.23 22748
Char-CRN-2 32 2048 15 1.09 86663

#RU WF

Wide Residual Net. [5]/CIFAR100 [42] WRN 610 101 14 1.91 187742
WRN-2 304 50 28 3.77 79742

HSD MD

Transformer [43]/IWSLT’16 German–English corpus [44] TRN 52 4098 2048 1.99 204792
TRN-2 48 8192 2048 5.1 160518

HSD FS P_SZ

Eidetic 3D LSTM [45]/Moving MNIST digits [46] E3D 320 5 4 0.95 55756
E3D-2 512 5 8 2.4 55756

(C)HSD: (Character) Hidden State Dimension, SL: Sequence Length, ED: Embedding Dimensions, RU: Residual Units, WF: Widening Factor, MD:
Model Dimension, FS: Filter Size, P_SZ: patch size.
preceding clustering step has eliminated the largest communication
delays. As a result, the communication delays are not considered for
cluster mapping [27]. Ignoring communication cost results in a low-
quality mapping when the graph becomes very large. Even if each
inter-cluster communication is small, the cumulative effect becomes
considerable. In addition, the load balancing is global rather than time
dependent (temporal). This balancing is not suitable especially for
graphs with frequent forks and joins (e.g., DNN graphs), where the
local and the global loads become more uncorrelated. We propose a
novel time-efficient heuristic called Locality-First Lookahead and Level-
Aware Mapping (LFLAM). LFLAM considers both critical-communication
minimization and the temporal load balancing.

Locality-first lookahead mapping. First, we perform locality-first looka-
head mapping, which assigns a secondary cluster 𝑠𝑐 to the primary
with which it communicates the most as long as there is unmapped
work (other tasks ahead) within 𝑠𝑝𝑎𝑛(𝑠𝑐) that can cover the temporal
load imbalance caused by that mapping step. The intuition is that if
both the balance and the locality are considered in the cost function at
the beginning of the mapping, the locality might be sacrificed in some
cases to account for balance. In such a case, an additional refinement
step would be needed to improve locality. Such a refinement step
would swap some of the already mapped clusters so that the locality
is regained without hurting the load balance. However, optimizing for
the locality first, knowing that there is a sufficient amount of tasks
ahead to balance again, diminishes the need for such a refinement
step. On the other hand, overprioritizing locality may harm parallelism.
Hence, it is crucial to decide which paths should be targeted. Moreover,
some communications are less important to eliminate than others. For
example, a communication edge between two nodes that have enough
amount of work to hide (e.g., (𝐴,𝐷) 𝑎𝑛𝑑 (𝐿,𝑀) in Fig. 2 b) is not as
important as communication that can be a pure delay (e.g., (𝐻, 𝐽 )).

We decide which paths to be targeted based on 𝐶𝐶𝑅 (total com-
munication cost to total computation cost ratio) of the graph [49,
30]. Higher 𝐶𝐶𝑅 means more communication compared to computa-
tion, hence locality is more important. In the literature [30], graphs
with 𝐶𝐶𝑅 ≥ 10 are considered as highly communicating. Hence
we use the 𝐶𝐶𝑅 value as a threshold to decide to what extent to
prioritize the locality. We divide the secondary clusters into two
groups: totally-communicating and maximally-communicating clusters.
Totally-communicating clusters are the ones whose all the incoming
and outgoing communications are with only one of the primaries. A
maximally-communicating cluster is the one whose communication
with one of the primaries is greater than its all communication/𝐾. Note
5

that this does not always hold since an 𝑠𝑐 can be communicating with
other secondaries not only with primaries. For graphs which have equal
or higher 𝐶𝐶𝑅 value than the threshold, clusters from both totally-
communicating and maximally-communicating are considered because
we need to save as much communication as possible. Otherwise only
totally-communicating clusters are considered. These clusters should
be added to their primaries even when 𝐶𝐶𝑅 is low as long as there is
unmapped work within 𝑠𝑝𝑎𝑛(𝑠𝑐) that can cover the possible temporal
load imbalance because such mapping is a pure gain as it would cancel
all their communications.

We decide the most important communication edges among clusters
based on their criticality. The criticality of a linear cluster 𝑙𝑐 is the
length of the longest path going from the graph source to its sink and
completely overlapping with 𝑙𝑐. This is equivalent to the 𝑤𝑙𝑣𝑙(𝑛) ∀𝑛 ∈ 𝑙𝑐,
where 𝑤𝑙𝑣𝑙(𝑛) is recalculated by setting communications within 𝑙𝑐s to
zeros after the slicing stage of ParDNN. The clusters are sorted by
their criticality in a non-increasing order. Then the desired clusters,
depending on the 𝐶𝐶𝑅 threshold, are traversed and any secondary
cluster is mapped to its most communicating primary if any of three
conditions holds: (a) 𝑙𝑐 has enough unmapped work within its span to
cover the local load imbalance of its mapping if any is caused by the
mapping, (b) if no local load imbalance occurs or the local balance is
improved, and (c) 𝑙𝑐 communication with the target primary is larger
than its weight, the work of the primary within its span, and the
unmapped work in its span. In the case of condition (c) if mapping
were not done, the communication would dominate potentially creating
a new longer critical path.

Level-aware load balancing. Next, level-aware load balancing is applied
to map the clusters that were not mapped in the previous step. Tem-
poral balance of the loads is achieved by considering the workload of
every 𝑝𝑒 within 𝑠𝑝𝑎𝑛(𝑠𝑐), where 𝑠𝑐 is the secondary cluster that is going
to be mapped to one of the primary clusters. 𝑠𝑐 is mapped to a 𝑝𝑒 that
has the minimal computational load within the 𝑠𝑝𝑎𝑛(𝑠𝑐), and minimizes
the incurred communication with the other processing elements. Eq. (1)
shows the selection criteria. In case of ties, we assign 𝑠𝑐 to the 𝑝𝑒 which
has the highest communication value with it.

min
𝑝𝑒∈𝑃𝐸

(

∑

𝑛∈𝑝𝑒,
𝑡𝑙(𝑛)∈𝑠𝑝𝑎𝑛(𝑠𝑐)

𝑐𝑜𝑚𝑝(𝑛) +
∑

(𝑛,𝑢)∈𝐸,
𝑛∈{𝑃𝐸}−𝑝𝑒,

𝑢∈𝑠𝑐

𝑐𝑜𝑚𝑚(𝑛, 𝑢) +
∑

(𝑢,𝑛)∈𝐸,
𝑛∈{𝑃𝐸}−𝑝𝑒,

𝑢∈𝑠𝑐

𝑐𝑜𝑚𝑚(𝑢, 𝑛)
)

(1)

Algorithm 2 shows a high level description of mapping. Lines 1–7
perform the Locality-First Lookahead Mapping. 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦_𝑓𝑖𝑟𝑠𝑡_
𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑_𝑚𝑎𝑝𝑝𝑖𝑛𝑔 takes the secondary clusters as a parameter and

decides whether to map the maximally-communicating clusters or
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Algorithm 2 LFLAM Mapping
In: pri_clusters[ ]
In: sec_clusters[ ]

1: 𝑤_𝑙𝑣𝑙𝑠 ← compute_weighted_levels(𝐺)
2: sort(sec_clusters, criticality_sorting_criteria)
3: num_of_mapped_lcs ← 0
4: iteration ← 0
5: do
6: num_of_mapped_lcs ← locality_first_lookahead_mapping(sec_clusters)
7: while num_of_mapped_lcs > 0 and iteration ≥ log(|𝑉 |)
8:
9: 𝑐𝑜𝑚𝑝𝑠[ ] ← 𝜙, 𝑐𝑜𝑚𝑚𝑠[ ] ← 𝜙

10: while 𝑠𝑒𝑐_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ≠ 𝜙 do
11: 𝑠𝑐 ← remove_next_secondary(𝑠𝑒𝑐_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
12: 𝑐𝑜𝑚𝑝𝑠 ← calc_work_at_span(𝑠𝑝𝑎𝑛(𝑠𝑐), 𝑝𝑟𝑖_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
13: 𝑐𝑜𝑚𝑚𝑠 ← calc_comms_with(𝑠𝑐, 𝑝𝑟𝑖_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
14: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑟𝑖 ← find_minimal(𝑐𝑜𝑚𝑝𝑠, 𝑐𝑜𝑚𝑚𝑠)
15: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑟𝑖 ← 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑟𝑖 + {𝑠𝑐}
16: end while

not depending on the 𝐶𝐶𝑅 value. It then maps the clusters based
on the three conditions we explained in the previous paragraph and
returns the number of the mapped clusters. Line 6 could be repeated
as long as at least one path has been mapped since the mapping
changes the communication. This possibly leads to the formation of
new totally-communicating or maximally-communicating paths. We
choose to repeat this step at most log(|𝑉 |) times to maintain low
complexity. The while loop (in Line 10) applies the level-aware load
balancing. The most time consuming part in this algorithm is to
calculate the work within the span of the target secondary cluster 𝑠𝑐
both as a part of 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑦_𝑓𝑖𝑟𝑠𝑡_𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑_𝑚𝑎𝑝𝑝𝑖𝑛𝑔 and on (Line 12)
in each of the primary clusters. We model this part as a problem of
frequent range queries with updates. More specifically, we need to find
the sum of the weights of the nodes whose levels fall in the span,
and upon merging, the weights of those levels are updated. We use
binary-indexed-trees [50] as a data structure, where the tree nodes
store the weights per level. This data structure allows logarithmic
range summation and value updates. Line 13 calculates the cost of
communication between the secondary cluster 𝑠𝑐 in each of the primary
clusters. Line 14 performs the selection criteria defined in Eq. (1) to
select the best primary cluster to merge the 𝑠𝑐 with.

Complexity: Before starting LFLAM, we sort the clusters by their
weights, this has an upper bound of 𝑂(|𝑉 | ∗ log |𝑉 |) since the number
of clusters is upper-bounded by the number of nodes. Since the clusters
are disjoint paths or singular nodes, and have no common nodes, the
total number of the update operations is bounded by |𝑉 |. The number
of range summation queries is bounded by the number of the paths
which is again bounded by |𝑉 |. The cost of either of the operations
is logarithmic in the number of the levels. The number of the levels is
≤ |𝑉 |, so we end up with 𝑂(|𝑉 | ∗ log |𝑉 |). The Locality-First Lookahead
Mapping is repeated log(|𝑉 |) times. Hence, the overall complexity of the
mapping stage is 𝑂(|𝑉 | ∗ log2 |𝑉 |).

3.2. Step 2: Handling memory overflow

Similar to Step-1, we handle the memory constraints statically
ahead of time for two main reasons: (a) to avoid any runtime over-
head, and (b) to reduce the chance of conflicting with other runtime
optimizations. We propose two memory heuristics both of which could
be seamlessly used with any optimization policies provided by the DL
frameworks. First heuristic is emulation-based and guarantees to meet
the memory capacity constraint. The second is a practical method that
6

aims to balance memory consumption on devices.
3.2.1. Memory heuristic I
This heuristic has three components; scheduler emulator, memory

consumption tracker, and overflow handler.

Scheduler emulator. To address the memory consumption statically,
temporal modeling of the allocation and deallocation patterns is re-
quired. Such modeling necessitates knowledge about scheduling in the
DL framework to estimate when an operation is going to start and
finish execution. Consequently, when the memory allocated for the
operation inputs is released and when a new memory is allocated
to hold the operation outputs. To estimate those values, we emulate
TensorFlow scheduler. TensorFlow scheduler maintains a ready queue
that is initially filled with nodes with no ancestors. Each node in the
graph has an in-degree representing the number of nodes it depends
on. The nodes are executed in FIFO order. Once a node is executed,
the in-degrees of its children are decremented by one. Any node having
an in-degree of zero will be pushed to the queue. Using the per-node
running times and communication sizes collected from profiling, we
emulate this behavior to get the expected start- and end-times of the
operations under a certain partitioning.

Complexity: The scheduler emulator estimates the starting time
𝑠𝑡(𝑛) and finishing time 𝑓𝑡(𝑛) of the nodes in the graph. The emulation
has a time complexity of 𝑂(|𝑉 | + |𝐸|) as the nodes are visited and
on each visited-nodes, the in-degrees of its direct descendants are
decreased.

Memory consumption tracker. In TensorFlow, from the memory con-
sumption perspective, operation-nodes broadly fall into three main
categories. First, operations of which the data survives across the
iterations [20] and we refer to them as residual nodes (𝑟𝑒𝑠_𝑛𝑠). Second,
special operations that mutate the referenced tensor, of the first type,
we refer to them as reference nodes (𝑟𝑒𝑓 _𝑛𝑠). Those operations do not
eserve any additional memory. However, they are co-located with the
ariables that they are mutating and must be moved together with their
eferred to variable nodes. Third, operations that require additional
emory proportional to their output size and we call them normal

nodes (𝑛𝑜𝑟_𝑛𝑠). Memory for the output of these nodes is allocated upon
scheduling and released once all their direct descendants are executed.

To create a functional cost model, our memory consumption es-
timation takes into account the scheduler, node types, and profiled
per-node memory consumption. One might think that profiling solely
peak memory footprints would be sufficient to predict the overflows.
However, to handle an overflow, nodes have to be moved between
partitions and that in turn changes the schedule and the memory
consumption as a function of time. Our cost model takes this dynamic
behavior into account and models the interplay between the scheduler
and memory usage.

Eq. (2) defines the memory consumption of a 𝑝𝑒 at time 𝑡,
𝑐𝑜𝑛𝑠(𝑝𝑒, 𝑡). The first term is the memory consumption of the 𝑟𝑒𝑠_𝑛𝑠

ssigned to that 𝑝𝑒. The second term indicates the memory consumption
f the normal nodes that have started on that 𝑝𝑒 at ≤ 𝑡 and are being
xecuted at 𝑡. The third indicates the nodes that have descendants
ssigned to that 𝑝𝑒 and the descendants’ expected starting time is ≥ 𝑡,
nd those nodes have finished at ≤ 𝑡 at any processing element except
𝑒, or are non-residual that have finished at ≤ 𝑡 on that 𝑝𝑒.

𝑐𝑜𝑛𝑠(𝑝𝑒, 𝑡) =
∑

𝑛∈𝑝𝑒,
𝑛∈𝑟𝑒𝑠_𝑛𝑠

𝑚𝑒𝑚(𝑛) +
∑

𝑛∈𝑝𝑒,
𝑛∈𝑛𝑜𝑟_𝑛𝑠,

𝑠𝑡(𝑛)≤𝑡≤𝑓𝑡(𝑛)

𝑚𝑒𝑚(𝑛) +
∑

𝑛∉(𝑝𝑒∩𝑟𝑒𝑠_𝑛𝑠),
𝑓 𝑡(𝑛)≤𝑡,

∃(𝑛,𝑢)∈𝐸∶𝑠𝑡(𝑢)≥𝑡,𝑢∈𝑝𝑒

𝑚𝑒𝑚(𝑛)

(2)

The overall memory consumption needs to be estimated for each
node (|𝑉 | time points) because the change in memory consumption
is triggered by node executions. Once a node starts executing, new
memory space needs to be allocated and that may cause an overflow.
Estimating memory consumption is done by visiting all the nodes in the

graph in the order of their estimated starting times, which is obtained
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from the scheduler emulator, and keeping track of the accumulated
memory consumption. In the same pass, the memory potential values
of the nodes (𝑀𝑝𝑜𝑡 in Table 2) are obtained. A node’s memory consump-
tion is added to the cumulative value once it is visited, and subtracted
after its last descendent in a certain 𝑝𝑒 is visited unless it is a 𝑟𝑒𝑠_𝑛𝑠.

Complexity: Tracking the memory consumption requires 𝑂(|𝑉 |)
time since it is done in one pass over the graph nodes while keeping
the cumulative values and calculating the potentials. This is given
that the node last descendant assigned to each processing element is
knows; which is collected while emulating the scheduler and hence its
complexity is implicitly included in the scheduler emulator part.

Overflow handler. After estimating the memory consumption, we tra-
verse the graph starting from the sink and keep the nodes in a heap data
structure, namely 𝑛𝑜𝑑𝑒𝑠_ℎ𝑒𝑎𝑝. When the memory consumed exceeds the
limit, we deal with the overflow as a 0–1 min-knapsack problem [51].
The min-knapsack problem is formulated as follows; given 𝑁 pairs of
positive integers (𝑐𝑗 , 𝑎𝑗) and a positive integer 𝑂, find 𝑥1, 𝑥2, . . . , 𝑥𝑁
so as to:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑁
∑

𝑗=1
𝑐𝑗𝑥𝑗 𝑠.𝑡.

𝑁
∑

𝑗=1
𝑎𝑗𝑥𝑗 ≥ 𝑂 𝑎𝑛𝑑 𝑥𝑗 ∈ {0, 1} (3)

In our case, 𝑂 represents the amount of memory overflow, and 𝑎𝑗
epresents 𝑀𝑝𝑜𝑡(𝑛, 𝑡). For the cost 𝑐𝑗, we use the summation of the node
omputation cost and the communication with its direct ancestors and
escendants located on the same 𝑝𝑒, as shown in Eq. (4), which defines
ove_cost.

𝑐𝑜𝑚𝑝(𝑛) +
∑

∀𝑢,𝑣∈𝑝𝑒(𝑛)
(

∑

𝑢∶(𝑢,𝑛)∈𝐺
𝑐𝑜𝑚𝑚(𝑢, 𝑛) +

∑

𝑣∶(𝑛,𝑣)∈𝐺
𝑐𝑜𝑚𝑚(𝑛, 𝑣)) (4)

The idea behind move_cost is that when a node is moved from a 𝑝𝑒
o another, it incurs a computational load imbalance proportional to
ts weight and extra communication proportional to its communication
ith the nodes assigned to the same 𝑝𝑒. Our goal is to find a set
f operation-nodes that the summation of their memory consumption
otentials at the overflow time is ≥ overflow when their total movement

cost is minimized. The movement criteria is to pick the node that has the
lowest move_cost∕𝑀𝑝𝑜𝑡(𝑛, 𝑡). In other words we choose the node that al-
leviate the overflow while incurring the least amount of communication
and computation imbalance.

The 𝑛𝑜𝑑𝑒𝑠_ℎ𝑒𝑎𝑝 is a min heap in which the movement criteria is the
ordering key. To avoid choosing a node that has a low movement criteria
but high move_cost, each node for which the 𝑀𝑝𝑜𝑡(𝑛, 𝑡) > overflow is
inserted in another heap at which the sorting key is move_cost. When
selecting, the top node is removed from both heaps and the one with
the least move_cost is chosen, and the other is returned to its heap.
The selected node is moved to another 𝑝𝑒 if the target 𝑝𝑒 has sufficient
memory to accommodate that node memory potential. Otherwise, the
node is not considered again and another node is picked from the heap.
The algorithm terminates when either the overflow is eliminated or we
run out of nodes without addressing it.

Complexity: We solve the knapsack greedily as the dynamic pro-
gramming based solution complexity is impractical. When an overflow
is detected, we pick the nodes from the heaps in a logarithmic time. Any
node that is moved to another partition is guaranteed not to be moved
again since it is moved only if the destination 𝑝𝑒 can accommodate it,
meaning that it can neither cause nor solve an overflow on that 𝑝𝑒. As
a result, there is no repetition and a node can enter or exit the heap
once, resulting in 𝑂(|𝑉 | ∗ log |𝑉 |). When a node is moved, the new
potentials and memory consumption need to be recalculated (𝑂(|𝑉 |)).
It may happen at most |𝑉 | times. Overall the complexity is 𝑂(|𝑉 |

2).
However, this upper bound is much larger than the practical one as
the number of nodes to be moved is usually much less than |𝑉 |.
7

3.2.2. Memory heuristic-II
Heuristic-II balances the memory consumption among devices but

theoretically does not guarantee meeting the memory constraint. Its ad-
vantages are (a) it does not require the emulation of the DL scheduler,
and (b) it is practically efficient as it permits training all the models
trainable using Heuristic-I in our experiment set.

This heuristic is based on the observation that most of the long-
living memory reserved throughout an iteration (one execution of the
graph), is either for a resident node holding parameters, or a normal
node holding output that will be fed to a distant node in the critical
path. We apply two strategies to alleviate any possible high imbalance
in memory consumption between the partitions. The first balances the
residual and non-residual net memory consumption ratios across the
partitions. Since the memory for residual nodes, which is allocated
for the model parameters, is reserved and not freed until the training
ends, it forms a permanent memory pressure. Moreover, most of these
nodes are not critical nodes. Only the ones used in the first few layers
should be provided quickly, meaning that their communications are
critical. The rest, which are the vast majority, can be communicated
by the time they are needed, which makes them good candidates to
move. We move these nodes from the most loaded partitions to the least
loaded ones until the summation of ratio of the residual node memories
in a partition to the overall memory for residual nodes and the ratio
of the normal node memories in a partition to the overall memory
for normal nodes are as equivalent as possible. For example, if there
are two partitions, where partition 1 holds 70% of the normal nodes’
memory and 60% of the residual nodes’ memory (partition 2 holds 30%
and 40%, respectively), then the result of applying the strategy would
be partition 1 having 70% of the normal and 30% of the residual nodes’
memory, and partition 2 having 30% and 70%, respectively. In other
words, the residual nodes are moved until Eq. (5) holds or there are no
more residual nodes to move.
∀𝑝𝑒 ∈ 𝑃𝐸, 𝐾∕2 (

∑

𝑛∈𝑝𝑒,
𝑛∈𝑟𝑒𝑠_𝑛𝑠

𝑚𝑒𝑚(𝑛) ∕
∑

𝑛∈𝑟𝑒𝑠_𝑛𝑠
𝑚𝑒𝑚(𝑛) +

∑

𝑛∈𝑝𝑒,
𝑛∈𝑛𝑜𝑟_𝑛𝑠

𝑚𝑒𝑚(𝑛) ∕
∑

𝑛∈𝑛𝑜𝑟_𝑛𝑠
𝑚𝑒𝑚(𝑛)) ≥ 1

(5)

In some cases moving the residual nodes is not enough. This hap-
pens when the graph is very thin, hence most of the nodes are located
on the critical path (the first path of the 𝐾 paths discovered by the
slicing algorithm). This case results in a highly unbalanced partitioning
because a balanced partitioning, in this case, would require splitting the
critical path which is not desired as it means longer execution time.
However, if the memory of a single device is not sufficient to hold the
peak memory that is required to execute the critical path then the path
has to be divided to be able to run the graph. So, our second strategy
detects if there is a high imbalance between the primaries and gives
contiguous chunks of the longest to the shortest – one chunk for each
of the shortest – to balance the memory requirements. This is performed
right after slicing but before mapping stages so that the Locality-First
Lookahead mapping guarantees the highest level of locality around
the reassigned chunks and the level-aware load balancing balances the
secondaries accordingly. Moving contiguous chunks of the critical path
does not cause a considerable performance degradation in the case of
our large and thin graphs since the critical path of a thin DNN graph
contains thousands to tens of thousands of nodes and introducing few
communications has a negligible effect. Without emulation or knowing
the schedule, it is not possible to know the memory consumption pat-
tern and the bottlenecks. As a result, heuristic-II should be enabled or
disabled by the user, as the user may want to train with a certain batch
size permitted by the partitioning without applying a memory heuristic.
For example, for the models that fit into a single device memory using
a small batch size, only partitioning the model is sufficient for a linear
scaling of the batch size.

Complexity: This heuristic requires simply moving nodes among

partitions. Since the movement is unidirectional, from the most loaded
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to the least, each node is moved at most once. Hence the total number
of moves is bounded by the number of nodes resulting in a time
complexity of 𝑂(|𝑉 | + |𝐸|).

4. Implementation

Our algorithm takes as an input the device count, their memory
capacities, the interconnection bandwidth and latency between them,
the model computational graph, profiling data, operations metadata.
The profiling data contain execution time measurements and the size of
the output of each operation-node. The operation metadata contain the
operation types (Section 3.2.1). TensorFlow standard APIs provide the
profiling information including per-node time, memory consumption,
and communication sizes at the granularity of graph nodes for regular
as well as user-defined operators.

To estimate the memory consumption, we implemented an emulator
of TensorFlow’s scheduler described in [20]. It is important to note that
if ParDNN with memory heuristic-I is intended to be used with another
DL framework, another emulator can be written to emulate its sched-
uler, if needed, without modifying our partitioning algorithm. When
handling memory constraints there is a trade-off between the overhead
and the accuracy; static handling prioritizes overhead reduction over
accuracy while dynamic handling targets the opposite. Due to the effi-
ciency and maintainability reasons discussed in Section 3.2, we adopt
the static approach. To accommodate sacrificing the exact details of
the memory management optimizations and allocation details, such as
fragmentation and temporary memory for local variables, we spare 10%
of the device memory and constrain ourselves to the remaining 90%.
This threshold was sufficient to successfully run all our experiments
without going out of memory (OOM). Nevertheless, this ratio might
need to be tuned and it is the only parameter of ParDNN that needs
tuning.

As shown in Fig. 1, the output of our algorithm is a single file
containing model operations placement as key–value pairs. Each key
is an operation-node name and the value is the device on which the
operation should be allocated. To control the placement at operation-
node granularity, the TensorFlow back-end reads the node-to-device
assignment from the placement file generated by our algorithm.

ParDNN on multiple nodes: Despite the capability of designing
ParDNN to partition a DNN on multiple nodes, in this work we as-
sume a single node where the processing elements are identical GPUs
connected to a common host. This is because the number of GPUs
per node has been steadily increasing over time. For instance, systems
with 16 or more GPUs per node are in production (e.g. NVIDIA DGX
SuperPOD). As suggested by many state-of-the-art works [9,2,13], we
argue that a hybrid approach of data parallelism across compute nodes
and using ParDNN inside the compute node is a practical choice.
This approach benefits from the efficiency and non-invasiveness of our
method in tackling the memory capacity issue at the node-level, while
also harnessing the weak scaling properties of data parallelism across
the nodes.

5. Results

This section is organized into two parts. First part compares the per-
formance of ParDNN against related work: critical path based heuris-
tics, explicit model parallelism, redundant recompute, and an out-of-
core method. The second part evaluates the scaling of ParDNN. Key
findings of each part are as follows:
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Comparison with related work. (i) ParDNN outperforms other criti-
cal path-based heuristics for computational graph placement [25,19].
Moreover, its empirical overhead is much lower than alternative well-
performing heuristics. Replacing Step-1 of ParDNN with other heuris-
tics results in a significant performance drop or huge increase in the
overhead. (ii) ParDNN outperforms the distributed tensor computation
framework, Mesh TensorFlow [28] and provides much higher user
productivity. (iii) ParDNN outperforms Gradient Checkpointing [52]
combined with data parallelism in many cases, yielding up to 2.7x
speedup. More importantly, ParDNN enables training models where
applying Gradient Checkpointing result in out of memory (OOM) even
with a batch size of 1. (iv) ParDNN outperforms CUDA Unified Memory
for all configurations and GPU counts.

Scaling. (i) For the same number of GPUs, ParDNN enables the use
of more than 9x batch size on average over the maximum possible
with data parallelism. (ii) Superlinear speedup in most models and
configurations is observed going from one GPU to 16 GPUs.

Using either of the memory heuristics gives similar performance
(running time). Hence, we only report the results with the memory
Heuristic-II for the sake of brevity.

5.1. Environment, models, and datasets

We conducted all our experiments on a NVIDIA DGX-2 with 16 Tesla
V100 SXM3 32 GB GPUs connected via NVSwitch. The throughput
measurements are conducted over the interval between the 100th and
the 150th training iterations to get stable results. We use TensorFlow
1.15 and CUDA 10.0.

5.2. Models and datasets

To demonstrate our results we experimented with five large models
representing four main tracks of DL applications: image classification,
translation, video prediction, and language modeling. All models and
datasets used in the experiments are listed in Table 3. We focus our
analysis on the performance of ParDNN, rather than pursuing the
accuracy as ParDNN has no effect on the learning aspect of the model.
More specifically, the convergence and accuracy are mainly affected by
changing the batch size and other hyper-parameters, and our algorithm
does not alter the model and its hyper-parameters in any fashion.
ParDNN changes the placements of the operations on devices after the
computational graph has already been generated by the framework.

We use Word-RNN a multi-layer Recurrent Neural Network for
ord-level language inspired by the character-level modeling [53].
haracter-Aware Neural Language Models (Char-CRN) [40]. Both mod-
ls can be enlarged by increasing the number of layers or the hidden
tate size. WRN [5] is a widened version of the residual network model.
n WRN the number of residual units and the width of the convolutional
ayers can be configured. The model size grows quadratically when
idened. WRN has been achieving better accuracy when the model is
idened [5]. TRN (Transformer) [43] can be enlarged by increasing

he number of layers, which deepens the model, and by widening the
nner-layer dimensionality. Deeper [54] and wider [43] configurations
f Transformer are shown to give higher accuracy. E3D is Eidetic 3D

LSTM [45] for video prediction. E3D can be enlarged by increasing the
number of the hidden state channels on the memory dimensions.

We experimented with models under two main use-cases of ParDNN.
First, model instances that fit into a single device memory only when
very small batch size is used. Small here is relative to the numbers used
by the DL community and reported in the literature. In such a case,
ParDNN provides a qualitative advantage over data parallelism (DP),
which splits the input over different GPUs that hold the replicas of
the model. The second use-case is model instances that do not fit into
a single GPU memory even with small batch sizes. These are the larger

variants of each model, as shown in Table 3 (e.g., Word-RNN-2). It
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Fig. 3. ParDNN speedup over Linear Clustering [25] and Critical-Path (CP)
heuristic [19]. x-axis: Number of GPUs (Batch Size).

is important to emphasize that the motivation of ParDNN is on cases
when the model cannot fit in memory or fits with very small batch
size, which has become a major challenge for large models. Hence the
experiments focus on weak scaling, not on strong scaling. If the model
fits in memory with large enough batch size, then we would not suggest
using graph-based methods.

5.3. Comparison with related work

We compare ParDNN with two graph (critical path)-based meth-
ods and three different state-of-the-art approaches used to circum-
vent the memory limitation when training DNNs. We compare with
(a) Linear Clustering [25] and Critical Path [19] methods, (b) Mesh-
TensorFlow [28] for explicit model parallelism, (c) Gradient Check-
pointing [52] in combination with data parallelism for redundant
recompute and (d) CUDA Unified Memory for out-of-core computing.
Although there exists other graph-based solutions, we cannot directly
compare with them either because we are not aware of any open source
implementation [17] or the implementation is available for MXNet
only [16] and cannot support all the operations used in Tensorflow.
It is worth mentioning, however, that ParDNN takes no more than 2
minutes for the largest configuration we tested, in comparison to 10s
of hours reported by the other graph-based methods [17]. In addition,
ParDNN working on models 2.3x as large as what the these methods
experimented with [17,18].

5.3.1. Graph-based methods: Linear clustering and CP
In [19], the authors proposed a set of heuristics to partition Tensor-

flow graphs among multiple devices. Among the proposed heuristics, a
critical path-based heuristic, referred as CP, achieves the best results in
all of their experiments. Authors performed event-based simulations to
evaluate their partitioning. We applied their heuristic on our graphs,
extracted the partitioning before the simulation step and fed them to
Tensorflow. As Fig. 3 shows, ParDNN outperforms CP using all models
on all device counts.

To demonstrate that our choice of using a multi-staged approach
over a high-complexity single heuristic does not harm the quality of
the partitioning, we compare ParDNN with Linear Clustering (LC).
To do a fair comparison, we implemented LC with GLB and Earliest
Estimated Time First (EST First) [37] as a task ordering heuristic since
this combination gave the best results. We post-processed the result
to meet the Tensorflow placement constrains. ParDNN outperforms
LC in all experiments, even though it sacrifices nodes’ weighted-level
recalculation after the 𝐾 ’th iteration, thanks to the novel mapping
heuristic. Moreover, while it took ParDNN ∼2 minutes to produce the
placement for the largest graph (TRN with 205K nodes), it took linear
clustering ∼12 hours. CP, on the other hand, is quite fast. It partitions
all the graphs within seconds. Both ParDNN and LC are far better than
CP, this is because CP assigns all the nodes outside of the critical path to
the least loaded devices without further grouping/clustering. In other
words, it does not consider locality outside the critical path.
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Fig. 4. ParDNN speedup over Mesh Tensorflow. X-axis: number of GPUs (batch size),
and the possible permutations permitted by Mesh-Tensorflow.

5.3.2. Mesh-TensorFlow
Mesh-TensorFlow [28], an extension to TensorFlow, was proposed

to overcome the memory limitations of a single device. It permits
specifying a general class of distributed tensor computations. We com-
pare the performance of ParDNN with Mesh-TensorFlow using the
Transformer model which the original authors used to demonstrate
the scaling [28]. Fig. 4 shows the speedup of ParDNN over Mesh-
TensorFlow using 2, 4 and 8 GPUs. We report all permutations [55]
with both regular weak scaling and the maximum trainable batch size
for most of these permutations. ParDNN outperforms Mesh-TensorFlow
in both cases. The performance gap is much larger with smaller batch
sizes. This is because when the batch size is small, GPUs are under-
utilized, and Mesh-Tensorflow splitting across model dimension, batch
dimension or both creates even smaller kernels exacerbating underuti-
lization. However, when the batch sizes are large enough, the benefit of
the parallelism created by Mesh-Tensorflow outweighs a possible minor
underutilization leading to a relatively good performance. Moreover,
unlike Mesh-TensorFlow (a) ParDNN requires no knowledge about
the DNN structure by the user, while with Mesh-TensorFlow it is the
responsibility of the user to rewrite the model using Mesh-TensorFlow
syntax. (b) ParDNN entirely automates the partitioning, while with
Mesh-TensorFlow users have to manually specify the tensor-dimensions
to be split across a multi-dimensional processor mesh and finding the
best assignment is an NP-hard problem. (c) Mesh-TensorFlow has a non-
negligible pre-run overhead which doubles when doubling the number
of GPUs reaching ∼1 hour for 8 GPU assignment.

5.3.3. Redundant recompute: Gradient checkpointing
Gradient checkpointing [56] enables DNN training with a sublinear

memory cost (𝑂(
√

𝑁)) when training an 𝑁 layer network by recom-
puting the activations during backpropagation, instead of holding the
forward pass results. In our comparison, we use a TensorFlow-based
open-source implementation [52]. Fig. 5 shows the speedup of ParDNN
over gradient checkpointing when combined with data parallelism to
run on multiple GPUs. For ParDNN and checkpointing, we used both
regular weak scaling and the common largest possible batch sizes.
ParDNN outperforms gradient checkpointing in most cases. In few
cases, checkpointing is better than ParDNN; this happens mainly when
the degree of parallelism inherent in the graph is not sufficient to
fully utilize all the GPUs when the model is partitioned, or when
checkpointing enables pushing large enough batch-size that guarantees
satisfactory utilization of these GPUs. However, more importantly,
ParDNN is qualitatively superior to gradient checkpointing since it
enables the training of models by using multiple GPUs where check-
pointing fails to make them fit in device memory, even when using a
batch size of one. For example, Fig. 5(b) shows several configurations
where gradient checkpointing goes out-of-memory at the batch size of
one. Moreover, the overhead of gradient checkpointing can be up to
5 hours [52].
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Fig. 5. ParDNN speedup over gradient checkpointing combined with data parallelism to run on multiple GPUs (X-axis: Number of GPUs (Batch Size)). Two batch size scalings
were used (a) doubling the batch size with the number of devices, (b) if both techniques allow larger batches, the comparison is held using the maximum commonly trainable
batch size. X indicates gradient checkpointing (combined with data parallelism) could not produce a valid solution regardless of GPU count.
Fig. 6. ParDNN speedup over CUDA Unified Memory (UM) using the large models.
X-axis: Number of GPUs (Batch Size).

5.3.4. Out-of-core: CUDA Unified Memory
Fig. 6 shows the speedup of ParDNN over CUDA Unified Memory

(UM). UM, to the authors knowledge, is the only out-of-core solution
that has an available Tensorflow implementation. ParDNN outperforms
UM in all cases. Although UM allows pushing large batch sizes what en-
hances GPU utilization, its performance degrades in many cases when
increasing the batch size due to the larger device–host communication
cost and the page faulting penalty [57].

5.4. Scaling studies

5.4.1. Batch size scaling
Training with large batch sizes offers more parallelism and dras-

tically reduces the overall training time. Authors in [58] proposed a
method to scale batch sizes, which reduced the training of RESNET-50
on ImageNet to one hour. Another work harnessed very large batch
sizes to reduce BERT training time from 3 days to 76 mins [59].
ParDNN enables superlinear scaling of the batch sizes while increasing
the number of GPUs. Table 4 shows the batch size scaling for all of our
experiments. We could increase the batch size by up to 256𝑥 for use-
cases-1 and 16𝑥 for use-cases-2 going from one to 16 GPUs. This gives
ParDNN a qualitative advantage even for models that fit into a single
GPU since ParDNN enables training with much larger batch sizes than
what can be achieved with DP.

ParDNN achieves superlinear scaling of the batch size firstly because
with ParDNN, the parameters are not replicated but distributed. A large
fraction of the memory consumed by the large models is to store the
parameters and variables that survive through iterations. For instance,
for 1.91 billion parameter WRN, TensorFlow allocates around 8 GB
for those variables. Using ParDNN these parameters are distributed,
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but with DP they need to be replicated. Secondly, for some opera-
tions, the memory consumption does not scale linearly with the batch
size. For example, in Word-RNN and Char-CRN, the outputs of matrix
multiplication operations have the largest memory consumption ratio.
When doubling the batch size, the memory consumption by matrix
multiplication results increases by only ∼25%. This is because the batch
size might be the inner dimension for many of these multiplications,
when multiplying a matrix of dimensions 𝑎 ∗ batch_size by another of
batch_size ∗ 𝑏, the result has the dimensions of 𝑎 ∗ 𝑏 regardless of the
batch_size. So the memory allocated to store the output of that operation
does not increase, and this effect propagates to its decedents that will
take its output as their input.

5.4.2. GPU count scaling
Figs. 7 and 8 show the speedup over a single GPU for small models

and the throughput scaling of ParDNN for large models, respectively.
We used two different sets of batch sizes to demonstrate scaling.
The first demonstrates scaling with the batch sizes at which ParDNN
achieves the peak performance, the vast majority of these batch sizes
are the ones listed in Table 4. The second doubles the batch size with
the number of GPUs (regular weak scaling).

In Fig. 7(a), ParDNN shows a substantial improvement on 2 GPUs
and superlinear speedups up to 4 GPUs for all the models. The sharp
performance increase happens because, in addition to the parallelism
introduced by adding more GPUs, pushing larger batches while dou-
bling the number of GPUs, improves the device utilization considerably.

Fig. 9 shows the improvement in GPU functional unit utilization and
GPU occupancy measured by using nvprof by Nvidia. We observe a
similar leap where the values of these metrics increase considerably
with the batch sizes used on 2, and in some cases, 4 GPUs. With
the batch sizes used on 8, 16 GPUs, the utilization improves at a
very small rate. Hence the scaling depends more on the inherent DoP
(average degree of parallelism) in the graph and CCR (Table 5). More
specifically, the models with higher DoPs scales better since introducing
more GPUs exploits the parallelism. However, models with low DoP
would result in small improvement in utilization since there is no
parallelism inherent in the graph to be harnessed by introducing more
GPUs.

Char-CRN has a large DoP, hence it continues to give superlinear
speedups up to 16 GPUs. However, its scaling is not perfect due to
having very high CCR, which results in having more communication
links between the partitions with higher GPU counts. Word-RNN scales
reasonably between 4 and 16 GPUs, thanks to its high DoP. However,
the scaling is not perfect again due to the high CCR. E3d scales reason-
ably due to its medium CCR: the scaling is not ideal due to the relatively
low DoP. Moreover, E3D experiences the lowest improvement in GPU
utilization since its main operation is 3D convolution, which utilizes the
GPU well enough (> 50% functional unit utilization) even with a batch
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Table 4
Maximum batch sizes (bsz) made possible by ParDNN. Bsz on a single GPU is the maximum that could fit without triggering OOM. Table also shows the multiplier by which
ParDNN could increase the bsz over ideal data parallelism (DP). For use-cases-1, DP is assumed to applied on top of a single GPU reference point. For use-cases-2, ParDNN enables
≥ 4-GPU assignment and DP is assumed to be applied on top of 4-GPU reference point. We report the values enabled by both of the memory heuristics.

Batch size scaling Increase over ideal DP

Model/#GPUs 1 2 4 8 16 1 2 4 8 16

Word-RNN 16 512 1024 2048 2048 1x 16x 16x 16x 8x
Char-CRN 8 256 512 1024 2048 1x 16x 16x 16x 16x
WRN 1 4 16 16 32 1x 2x 4x 2x 2x
TRN 1 8 32 64 128 1x 4x 8x 8x 8x
E3D 1 8 16 16 32 1x 4x 4x 2x 2x

Word-RNN-2 – – 32 128 256 – – 1x 2x 2x
Char-CRN-2 – – 128 512 1024 – – 1x 2x 2x
WRN-2 – – 4 16 32 – – 1x 2x 2x
TRN-2 – – 2 16 32 – – 1x 4x 4x
E3D-2 – – 8 16 32 – – 1x 1x 1x
Fig. 7. ParDNN speedup over a single GPU using 2, 4, 8 and 16 GPUs. X-axis: Number of GPUs (Batch Size).
D
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Fig. 8. Throughput and scaling up to 16 GPUs with use-case-2 models. X-axis: Number
of GPUs (Batch Size).

size of 1. Both TRN and WRN have high CCR and low DoP, hence they
have the lowest improvement rate going from 4 to 16 GPUs. In Fig. 7(b),
the magnitudes of the achieved speedups are less due to smaller batch
sizes which means less utilization (as a magnitude) compared to their
counterparts in Fig. 7(a). However, the scaling is better (going from X
to 2X GPUs) up to 16 GPUs. This is because most of the used batch sizes
belong to the ranges at which the utilization considerably improves
with larger batches (before the plateau in Fig. 9).

In Fig. 8(a), going from 4 to 8 GPUs enables much larger batches
n all cases. This in turn enhances the resource utilization and results
11

w

Fig. 9. Average functional unit utilization and GPU occupancy with different batch
sizes. X-axis: Batch Size.

in substantial throughput improvements. Char-CRN-2 scales linearly
up to 16 GPUs due to its high DoP. The same applies for Word-RNN-
2. WRN-2 and TRN-2 scale modestly from 8 to 16 due to the low

oP. But the scaling is better than in Fig. 7 since the batch sizes
rainable with these models are located in the region at which the GPU
tilization still improves with larger batch sizes (before the plateau). In
ig. 8(b) ParDNN enables linear scaling of the batch size for E3D-2 with
performance scaling behavior similar to E3D for the same reasons.

.5. Overhead of ParDNN

ParDNN has a negligible overhead thanks to the low complexity
f each step. The longest partitioning time among all the combina-
ions of batch sizes, GPUs and model configurations used in this work
as 2 minutes in the case of partitioning TRN-2 over 16 GPUs. The
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Table 5
Degree of Parallelism (DoP) and Communication to Computation Ratio (CCR) of the
models.

Model DoP CCR

Word-RNN 10.45 14.5
Char-CRN 49 57
WRN 1.16 13.02
TRN 2 13.7
E3d 3.3 1.12

minimum time of 18 secs was taken to partition Word-RNN over 2
GPUs. Even though handling the memory overflow in case of memory
heuristic-I takes most of the overall partitioning time, the time taken
to handle memory overflow is much lower than the theoretical upper
bound. This is because the complexity analysis of Step-2 of ParDNN
epends on how many nodes need to be moved between clusters to
ddress the overflow, which is much less than |𝑉 | in practice. The

average ratio of the nodes moved in all our experiments is 8%.

6. Related work

We summarize related work that touches on different aspects of
ParDNN: from techniques that handle, or can alleviate, memory bottle-
necks either using a single device by partitioning a DNN across multiple
devices, to graph partitioning and scheduling.

Systems-level approaches: Mirhoseini et al. proposed a reinforce-
ment learning-based method to place dataflow graphs on multiple
devices [18,17]. This approach suffers from significant time and re-
source consumption. The proposed policy was trained for hours using
16 workers to produce placements for models having less than 100𝐾
operations. A more efficient approach was proposed by Wang et al.
in [16]. However, it requires a description language to specify com-
putations and cannot describe all the operations used in DL. Moreover,
it partitions all operators and tensors across all workers, resulting in
poor resource utilization. In [19], authors propose a set of practical
heuristics to partition Tensorflow graphs. They concluded that critical
path-based approaches yield the best performance.

DL-level approaches: Explicit model parallelism, where each
worker is responsible for a subset of the layers, suffers from two major
limitations: requiring complex cost models on case-by-case bases and
leaving the partitioning burden to the programmer [14]. Pipeline par-
allelism provides good resource utilization yet some implementations
requires a single layer to fit in a single device [54], which may not
be the case for models with 3D inputs [60]. While in others, extra
memory overhead proportional to the size of the model weights is
necessary to address the statistical efficiency issue, i.e. preventing
model convergence [14]. In [15,61,12,9] non-generic techniques were
proposed to parallelize specific types of DL models, some focusing on
CNNs while others relying on Transformer in their optimizations.

Out-of-core and Recomputation: these methods either augment
the device by utilizing an extra memory (Out-of-core methods) or opti-
mize the memory consumption of the model (recomputation methods).
vDNN [62] is a memory manager that virtualizes GPU memory in
DNN training. ooc_cuDNN [63] extends cuDNN and applies cuDNN-
compatible operators even when a layer exceeds GPU memory capacity
by swapping at the granularity of individual tensor dimensions. Gra-
dient checkpointing [56] reduces the memory needed to store the
intermediate outputs and gradients with the cost of doubling the for-
ward pass computational cost [64,56]. PoocH [65] and Capuchin [29]
propose a hybrid approach that selects either recomputing or swap-
ping for certain layers to reduce the performance overhead based on
profiling data.

Graph partitioning: To deal with a directed graph, existing graph
partitioning libraries convert every directed edge to undirected even
12

though this conversion loses crucial information [66]. Due to this
Table 6
Time complexity of some of the best task scheduling algorithms.

Algorithm Time complexity

Dynamic Critical Path [69] 𝑂(|𝑉 |

3)
Bubble Scheduling [68] 𝑂(𝐾2

|𝑉 ||𝐸|)
Earliest Task First [71] 𝑂(𝐾|𝑉 |

2)
Linear Clustering [25] 𝑂(|𝑉 |(|𝑉 | + |𝐸|))

reason, Scotch static mapper [22,23] and MinCut optimizer, results in
2 to 10 times slowdown when applied on graphs of DL models [18,17].
In [67], new techniques are proposed to deal with directed graphs
and [49] built on top of those techniques for a clustering based sched-
uler. They aim at producing acyclic partitioning, where if there is a cut
edge from partition 𝑎 to 𝑏 and another from 𝑏 to 𝑎, the partition is
onsidered cyclic, and is not acceptable. Since the graphs produced by
ensorflow are full of fork-joins, applying their technique to our DNN
odels results in unbalanced partitions.
Static graph scheduling: Plenty of sophisticated and high-quality

lgorithms were proposed [68–72] in this area. The vast majority
f these algorithms were developed in 1990’s to handle small-sized
raphs, and they were later evaluated using instances having up to
000 nodes [73,74,72,37,75]. A recent evaluation on large graphs
hows that they either do not scale due to their high time-complexity,
r produce low-quality allocations due to their inability to capture the
lobal structure of the graph [49]. Table 6 shows the time complexity of
ome of these algorithms. Note that these heuristics are only scheduling
euristics (do not include memory handling component), hence their
omplexities should be compared against Step 1 of ParDNN.

. Conclusion

ParDNN presents a lightweight and automatic approach to partition
omputational graphs of very large DNN models. It permits the training
f models that do not fit into a single device memory, and enhances the
raining throughput of models barely fitting into a single device mem-
ry while being non-intrusive and generic. ParDNN is applied ahead of
ime and, hence the partitioning is available at the beginning of a run
hat enables applying any type of dynamic (runtime) optimizations on

op of it. Due to the limited degree of parallelism of DNN graphs and the
rend towards including more accelerators in one node, we proposed
o apply ParDNN within a single node. Nevertheless, it can be used
s an integral part in a large-scale training where Data Parallelism is
sed as an inter-node technique. The experiments on five large DNNs
nd comparisons with related work demonstrate its high efficiency and
uperlinear scaling of batch size and training throughput.
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