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ABSTRACT

General purpose computing on GPUs have became increas-
ingly popular over the last decade. Scientific applications
with SIMD computation characteristics show considerable
performance improvements when run on these massively par-
allel architectures. However, data dependencies across thread
blocks significantly impact the degree of achievable paral-
lelism by requiring global synchronization across multi-pro-
cessors (SMs) inside the GPU.

In order to efficiently run applications with inter-block
data dependencies, we need fine-granular ‘task-based execu-
tion models’ that will treat SMs inside GPU as stand-alone
parallel processing units. Such a scheme will enable efficient
execution by utilizing all internal computation elements in-
side GPU and eliminating unnecessary waits during global
barriers.

In this paper, we propose a new, dynamic and ‘all-in-GPU’
task execution framework for executing both regular and
irregular data-dependent applications on GPUs. Our run-
time eliminates the need for global synchronization and min-
imize inter-SM communication through distributed queues.
In our preliminary experiments run on a Tesla ¢c2050 GPU,
we have obtained up to 62% more speedup when compared
to centralized queue approach. The overhead of system has
been measured as low as 5%.

Categories and Subject Descriptors

D.1.3 [Software]: Concurrent Programming— Parallel pro-
gramming

Keywords
GP-GPU Computing; Task Scheduling; Data Dependency

1. INTRODUCTION

Using Graphical Processing Units (GPUs) for general pur-
pose computation have been increasingly popular over the
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last decade. Massive parallelism provided by hundreds of
GPU cores offers considerable speedups for SPMD (single
process multiple data) type of computation. Most of the
top supercomputers today employ GPUs as primary co-pro-
cessors in their configuration. Many scientific applications
have been ported and optimized to run on GPUs to effi-
ciently process massive amounts of data.

As all good things come with a price, designing algo-
rithms for GPUs requires additional considerations due to
the SPMD nature of GPU operations. Lack of efficient hard-
ware communication mechanisms between SMs forces par-
allel threads running on different SMs either being data in-
dependent from each other or synchronize via software bar-
riers [8]. Irregular dependencies will result in statically un-
predictable workloads, which are possibly generated during
run-time. Due to this dynamically changing behavior of such
workloads, algorithms with complex dependencies have been
classified as ‘unsuitable’ for ‘data-parallel’ programming ap-
proach of GP-GPU computing][6].

We believe GPUs, with its hundreds of cores, can be used
to solve problems with ‘data-dependent’ characteristics as
well. This needs development of a task-based execution
model and efficient synchronization techniques somewhat
similar to the MIMD operations. The conventional GP-GPU
programming paradigms (e.g. OpenCL, CUDA) executes a
TB on any SM in no specific order. We propose to treat each
thread block as a ‘generic task’ and smartly assign them into
SMs as and when their dependencies are resolved. This will
greatly expand the pool of the applications which can be ac-
celerated on GPU, however, implementing the support for
this approach presents several challenges.

The key challenge in implementing such a task-based ap-
proach is employing an efficient ‘synchronization’ mecha-
nism between SMs. Checking dependencies between tasks
require communication and synchronization between SMs.
With the existing CUDA execution model, inter-thread block
(TB) communication is possible either via global memory
using atomic and memory fence functions which tend to be
a very slow with increasing number of thread blocks and
datal[8]. Although, NVIDIA’s latest Kepler GK110 architec-
ture enables device-side finer granular synchronization using
cudaThreadSynchronize(), using this mechanism as an inter-
SM communication method presents several hardware lim-
itations and programmability issues. Overall, minimizing
inter-SM communication while resolving dependencies is a
priority consideration in building a task-based execution en-
vironment.



Another challenge is to decide ‘where to execute the sched-
uler’ (e.g. CPUs or GPUs). The ‘serial’ and ‘iterative’ na-
ture of CPU oriented schedulers will result in under-utiliza-
tion of SIMD-based SP cores when they are placed on GPU.
Host controlled scheduling[7, 2] comes with the high over-
head of continuous queue transfer between CPU and GPU,
hence a huge performance penalty due to slow host to GPU
interconnect (i.e. PCl-e) [5].

In this paper, we propose a new, dynamic task execution
framework for executing both regular and irregular data-
dependent applications on GPUs. We have implement the
proposed task-based execution model on a Tesla C2050 GPU
and perform preliminary measurements.

Our study makes the following contributions:

e We present a new, CUDA based dynamic task-based
execution framework for applications having regular
and irregular workload dependencies.

e We implement a novel GPU based light-weight parallel
task scheduler, co-existentially running along with the
workers, via concurrent kernel execution.

e We compare our results with a centralized queue, all-
worker approach based solution, and present the re-
sults.

The rest of this paper is organized as follows: In Section 2
we give background and motivation. We present our frame-
work with full details in Section 3. Then, we show the results
and evaluation of our framework in Section 4 and conclude
the paper with the last section.

2. A PARADIGM SHIFT: TASK BASED EX-
ECUTION ON GP-GPUS

General purpose usage of GPU architectures have enabled
considerably faster execution for applications which exploits
data parallelism in an SIMD fashion. Hierarchical grouping
of hundreds of scalar cores(SPs) into larger symmetric multi-
processors (SMs) provides a fair trade-off between scalability
and inter-SM communication. Threads belonging to same
thread block (TB) run on the same SM with access to a
fast, shared memory and can synchronize with each other
very efficiently. On the other hand, they are totally isolated
from the threads in other TBs so that applications can easily
scale up to thousands of threads without any degradation in
performance. Redundant number of thread blocks, which
are provided by the programmer, are executed in no specific
order by the thread block scheduler, during a specific kernel
launch.

2.1 Dependency: An inherent problem of tra-
ditional GP-GPU programming

Sacrificing efficient inter-SM synchronization capability in
exchange for scalability was a necessary decision made by
GP-GPU designers [3]. However, this sacrifice has resulted
in severe restrictions on the domain of applications that can
be accelerated by GPUs. An ideal GP-GPU application
would require a data-parallel region in the program that
requires no global synchronization points whereas data de-
pendencies across different threads might require inter-TB
communication for computational accuracy.

Except for a limited number of simple kernels, many ap-
plications in popular benchmark suites like Rodinia[l] and
CUDA SDK Samples implement synchronization mechanisms
by dividing parallel regions further into smaller data-inde-

pendent sub-routines which are then executed on the GPU
by consequent kernel launches. However, this approach is
hard to design and implement, and also is inefficient for ap-
plications having dynamically generated task graphs due to
redundant resource allocation required for unpredictable de-
pendencies.

2.2 Task-based Execution Model

Treating SMs like standalone processors, which are capa-
ble of running tasks independent of each other, will provide a
more generalized approach to address the issues mentioned
above. Once applications are represented as task graphs,
similar to multi-CPU systems, SMs will be able to consume
ready tasks as they become idle.

Figure 1: Sample task graph for Heat2D application.

Figure 1 shows a sample task graph for Heat2D appli-
cation, where each task corresponds to an SIMD parallel
region of the application. Entire 2D surface is divided into
chunks where each of them is represented by a task. Each
task is processed by symmetrical threads in an SM using
the standard synchronization techniques. Dependencies be-
tween the tasks are represented by the task graph edges and
tasks can be executed on different SMs in parallel, subject
to the dependency resolution.

In this study, we introduce a new task-based dynamic task
execution model. Based on our preliminary experiments, we
propose a distributed queue based worker-scheduler mecha-
nism running completely on GPU without relying the host
side.

3. PROPOSED FRAMEWORK

In this section we first give an overview of our framework
at a high level. Later we will focus on details of our run-
time where we explain the scheduler and worker threads’
operations.

3.1 Overview of Task-based Execution

An overview of our framework is illustrated in Figure 2.
The run-time is composed of N Worker thread blocks(TB)
and a scheduler TB, where all TBs continuously run until the
application ends. N is equal to the number of SMs. Each
SM (interchangeably used with ‘worker TB’) is associated
with a private task queue located in global memory. Queue
is decentralized (one per SM) so that each worker TB can
read from/write to its own queue without synchronizing with
other TBs.
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Figure 2: (a) An overview of our proposed in-GPU task scheduling framework([left] (b) Control-flow diagram

for worker TB.[right]

Scheduler TB operates in a parallel manner where each
thread accesses to a specific element in the task queues as-
sociated with each SM. Dependency checks are also done in
parallel.

Initial tasks list, dependency graph and the actual data
which tasks point to are to be provided by the user, as shown
in the bottom part of Figure 2.a. Both static and dynam-
ically populated task lists are supported. In a typical sce-
nario, each task structure contains pointers to the actual
data on the GPU global memory.

The proposed task execution follows a sequence of six op-
erations as marked clearly in Figure 2.a.

1. Scheduler initially searches the tasks list and identifies
the starting tasks whose dependencyCounter is zero
(which means that all prior dependencies of the task
is resolved and it is ready to execute).

2. Scheduler TB inserts the ready task into a proper worker
queue based on the scheduling policy. Corresponding
worker TB is notified by an increment of the Input
Queue Size (IQS) counter, which is implemented as an
atomic variable.

3. Worker TB grabs tasks, forwards it to the user appli-
cation. The application can fully utilize the SM, since
worker TB transfer the full control to the supplied user
kernel.

4. When the user kernel finishes processing the task, con-
trol is transferred back to worker TB. To let the sched-
uler know that the task is finished, worker TB, incre-
ments Output Queue Size (OQS) counter for the cor-
responding SM. Please note that this counter is for
signaling purposes only and there is no separate out-
put queue.

5. Scheduler TB continuously checks each worker TB for
outputted tasks in parallel. Once a task is processed
by an SM (i.e. OQS is greater than zero), the sched-
uler TB goes through its dependents via user supplied
dependency graph and discovers whether new tasks be-
come ready to be processed (i.e. independent).
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6. The process repeats with the new ‘ready’ tasks. This
step replaces step (1) for the rest of the execution.
Both scheduler and worker TBs terminate when the sched-
uler decides that there are no tasks to process.

3.2 Run-time Components

In this sub-section, we explain several components of our
task-based execution model.

(a) Concurrent worker&scheduler kernels: Our run-
time is composed of two kernels: worker and scheduler.
Worker kernels are wrappers for actual user functions. They
also carry consumer operations like grabbing tasks from the
distributed queues and writing processed tasks back to the
queue. Scheduler thread, on the other hand, is solely trans-
parent from the application code and runs as an on-GPU
daemon.

In order to have both scheduler and worker TBs to run
simultaneously, our run-time uses concurrent kernel execu-
tion. We asynchronously launch two kernels via two different
streams with scheduler and worker grid with dimensions of
1 and N, respectively. During kernel launch, GPU hardware
scheduler assigns corresponding thread blocks to available
SMs according to their resource availability.

(b) Inter-SM Signaling IQS & 0QS: As an efficient
way for workers and scheduler to check the entire task queue
for any completed or newly inserted tasks, we use two spe-
cial arrays (i.e. counters), input_queue_size[] (I1QS) and out-
put_queue_size[] (OQS) to provide an atomic signaling be-
tween them. Each worker and scheduler TB continuously
checks for I1QS and OQS, respectively. When a worker TB,
as illustrated in 2, encounters a greater-than-zero value in
1QS,this implies that the scheduler has placed a task into
that specific worker’s queue. Similarly, a positive value en-
countered by the scheduler in the OQS of a worker implies
that the worker has finished processing a task. To further
decrease the contention, we have forced worker threads to
briefly stay idle when IQS is zero.



(c) Lock-free Queues: Our run-time employs a dis-
tributed queue scheme in order to eliminate synchronization
between workers on queue retrieval. Moreover, writes and
reads between scheduler and worker are also lock-free. As
also illustrated in figure 2.b, both worker and scheduler TBs
hold separate pointers to the index of the task which has
been inserted and processed, respectively.

(d) Parallel Queue Access and Task Scheduling:
Another important part of our queue access optimization is
exploiting parallel and aligned access. Worker and scheduler
threads belonging to same wrap access consecutive queue
locations in order to avoid ‘costly’ unaligned accesses. Once
the scheduler detects processed tasks, resolves dependencies
and identifies new tasks, the only remaining operation is to
decide the queue in which the new task should be placed.

(e) Queue insertion policies: As in all other multi-
processor decentralized task queue based systems, queue in-
sertion policies play an important role on achieving load
balance as while preserving data locality as much as possi-
ble. We have embedded two different policies and evaluated
their effects through experiments. Round robin is the most
primitive policy which simply places a given task to next
available SM provided that its task queue is not full. Tail-
submit[4] executes the first generated on the local proces-
sor immediately. Later tasks are inserted to the queue that
has minimum number of tasks. Performance implications of
these policies will be investigated in detail in the Evaluation
section.

4. EVALUATION

In this section we will present a detailed evaluation of our
proposed framework.

4.1 Platform

We have carried our experiments on a 64-core AMD based
system with a nVidia Tesla C2050 GPU running on 64GB of
total system memory.The GPU is based on Fermi Architec-
ture and it is attached to the system via PCI-Express slot. It
has 3 GB of on-board memory along with 448 CUDA cores
delivering up to 515 Gigaflops of peak performance. There
are 14 SMs in total and each SM contains 32 SPs (CUDA
cores).

In order to demonstrate the efficiency of our distributed
queue (DQ) scheme, we have also implemented the central-
ized queue (CQ) approach described in [9]. For a fair com-
parison, we have done our best to embed all implementation-
related optimizations while re-implementing CQ scheme.

To evaluate our task-scheduling scheme, we have selected
two applications that represent the extreme ends of applica-
tions with dependencies. Heat Equation (Heat2D) has tasks
with regular dependency patterns and breadth first search
algorithm (BFS) has dynamically created tasks with irregu-
lar dependency patterns.

4.2 Initial Results

In order to evaluate our proposed run-time we have per-
formed a series of experiments. We have first measured exe-
cution time of our proposed distributed queue (DQ) with two
different insertion policies (Round Robin and Tail Submit)
as well as the already existing Centralized Queue approach
(CQ). Then we have investigated load balancing abilities of
these policies. Finally we have evaluated scalability of our
distributed queue scheme (DQ) versus CQ approach
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As described in the previous section, we have implemented
two different distributed queue insertion policies: Round-
Robin (RR) and Tail-Submit (TS).

We have run task based Heat2D and BF'S applications us-
ing 14 SMs (Thread Blocks). The input size for Heat2D was
a 2D array of 8K by 8K. Tile size is taken as 256x256 and to-
tal number of tasks was 4K. For BFS, We have used a graph
containing 2K nodes, resulting in a task graph with the same
number of nodes. The generated graph has 4 neighbors at
max and the maximum breadth size was fixed at 128.

The results in Figure 3 depicts the breakdown of the aver-
age total execution time. The following timings are shown:

e Computation: The time spent for executing a task
already fetched from queues

e Idle Time: The total idle time spent by SM while
waiting for a task to be assigned.

e Queue Retrieval/Insertion: (Central queue only)
The time spent while acquiring central queue lock and
retrieving/inserting a task.

e DRT (Dependency Resolution Time): (Central
queue only) The time spent by workers while going
through dependents of an executed task.

e IQS & 0QS: (Distributed queue only) The time spent
during atomic read of input and output queue signals
between scheduler and workers.

Our newly introduced distributed queue based scheduling
with with Tail Submit has provided speedups up to 15%
for Heat2d and 62% for BFS when compared to centralized
queue approach.

For both Heat2D and BFS, it can clearly be observed
that centralized queue scheme shows poor performance in all
cases. For Heat2D, computation time is significantly higher
due to increased memory contention. The Heat2D algorithm
is memory intensive, therefore memory accesses issued while
accessing central queue are adversely affecting the execution.
For BF'S, quick execution time of the algorithm dramatically
increases the retrieval/insertion rates of tasks, hence causing
a significant jump on central queue access latencies.

Heat2D
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PN Time (ms)
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o Idle Time
M Queue Retrieval
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H Computation
B Queue Insertion
B Dependency Resolution

Figure 3: Average execution time breakdown for
various scheduling and queuing policies for Heat2D
(a) and BFS (b)



Distributed queue schemes, on the other hand, all result
in faster execution times against central queue. Signaling
timings, IQS and OQS, replaces the delays for queue inser-
tion/retrieval times by resulting in less overhead in total.
Especially for BFS, the difference between these two set of
timings shows the clear advantage of distributed queue ap-
proach over the centralized queue scheme.

When we compare distributed queue schemes with each
other, it can easily be observed that round-robin (RR) causes
SMs to stay idle more than others. This is primarily due
to destroyed locality between tasks. When a task is pro-
cessed, all of its children tasks whose dependencies are re-
solved are placed into other queues due to increasing round-
robin counter. On the other hand, Tail-Submit (TS) pre-
serves locality on the insertion of first task, hence decreas-
ing memory access times considerably due to better cache
locality.
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Figure 4: Comparison of Distributed Queue (DQ)
and Centralized Queue (CQ) for varying number of
SMs.

We have also observed the effects of varying number of
SMs on performance for the Distributed Approach (DQ) and
centralized queue approach (CQ). In this experiment, while
keeping other parameters same, we have changed the total
number of SMs from 6 to 14 in order to observe the changes
in idle time and queue access time. Time breakdown for
each SM is shown in pairs in Figure 4.

An immediate observation is that the average idle time for
CQ increases significantly for increasing number of SMs.This
is mainly due to adversely affected task locality as more SMs
insert un-related tasks simultaneously to the central queue.
In other words, effects of locality become more prominent
as more SMs are involved in the computation.

S. CONCLUSION & FUTURE WORK

In this study we have proposed a new, dynamic task-based
execution scheme for GP-GPU applications with regular and
irregular data dependencies. Different from previous stud-
ies, our framework places both scheduler and worker threads
inside the GPU in order to prevent the data transfer over-
head between CPU and GPU and the centralized queue con-
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tention. Our framework further employs optimizations like
concurrent kernel execution, input&output queue signaling
and parallel scheduling.

Our initial experiments showed that the proposed dy-
namic scheme clearly overcomes the bottleneck of kernel
launches, host-based and GPU-based centralized queue ap-
proaches. We have achieved speedups up to 15% for Heat2d
and 62% for BFS when compared to centralized queue ap-
proach.

Considering the fact that today’s GP-GPUs are getting
more cores, we believe our framework is an important at-
tempt to bring task-based execution paradigm on GP-GPU
into a higher level. Although our software approach proves
the feasibility of the paradigm, a complete solution needs to
address following issues:

e Task queues and dependency handling mechanisms should
be handled by a dedicated hardware and signaling mech-
anism to decrease the contention on global memory,
hence enabling faster inter-SM communication.

e To efficiently exploit locality aware scheduling, we need
to have native support for assigning a given task (i.e.
thread block) to a given SM.

e Existing CUDA API should be extended to let pro-
grammer to access the hardware mechanisms proposed
above.

To conclude, we believe, the scope of GP-GPU applica-
tions have tendency to migrate from SIMD based approach
with regular data-dependencies towards MIMD style of com-
putation with irregular data-dependencies. The literature as
well as the manufacturers should provide faster solutions to
address this inevitable inclination.

6. ACKNOWLEDGEMENTS

The paper was partly supported by NSF grants CCF 0905509
and CNS 1157377.

7. REFERENCES

[1] S. Che et al. Rodinia: A benchmark suite for
heterogeneous computing. In IISWC 2009, pages 44-54.
IEEE, 2009.

L. Chen et al. Dynamic load balancing on single-and
multi-gpu systems. In IPDPS 2010, pages 1-12. IEEE,
2010.

M. Garland et al. Parallel computing experiences with
cuda. Micro, IEEE, 28(4):13-27, 2008.

J. Hoogerbrugge et al. A multithreaded multicore
system for embedded media processing. In Transactions
on high-performance embedded architectures and
compilers I, pages 154-173. Springer, 2011.

D. Lustig et al. Reducing gpu offload latency via
fine-grained cpu-gpu synchronization. In HPCA 2013.
IEEE, 2013.

J. Nickolls et al. Scalable parallel programming with
cuda. Queue, 6(2):40-53, 2008.

T. Okuyama et al. A task parallel algorithm for
computing the costs of all-pairs shortest paths on the
cuda-compatible gpu. In ISPA’08, pages 284—291.
IEEE, 2008.

J. A. Stuart et al. Efficient synchronization primitives
for gpus. arXiv preprint arXiv:1110.4623, 2011.

S. Tzeng et al. A gpu task-parallel model with
dependency resolution. Computer, 45(8):34-41, 2012.

[2

3

[4

5

6





