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Abstract—The slowdown of Moore’s law has caused an escala-
tion in architectural diversity over the last decade, and agile de-
velopment of domain-specific heterogeneous chips is becoming a
high priority. However, this agile development must also consider
portable programming environments and other architectural con-
straints in the system design. More importantly, understanding
the role of each component in an end-to-end system design is
important to both architects and application developers and
must include metrics like power, performance, space, cost, and
reliability. Being able to quickly and precisely characterize the
needs of an application in the early stages of hardware design is
an essential step toward converging on the primary components
of these increasingly heterogeneous platforms. In this paper, we
introduce FLAME, a graph-based machine representation to
flexibly model a given hardware design at any desired resolution
while providing the ability to refine specific components along the
hierarchy. FLAME allows each processing unit in the system to
declare its specific capabilities and enables higher level elements
to reuse and leverage these declarations to form more complex
system topologies. Applications are characterized with the Aspen
application model; each component has the ability to report its
characteristic behavior for a given application model against
a supported metric. We demonstrate the feasibility of FLAME
for several workloads via multi-core machine representations on
different levels abstraction.

I. INTRODUCTION

The slowdown of Moore’s law has caused an escalation
in architectural diversity over the last decade, and agile
development of domain-specific heterogeneous chips tailored
for specific application workloads is becoming a high priority.
This process will require the close coordination of applications,
software, and hardware so that architects can understand the
role of each component in an end-to-end system design in
terms of metrics like power, performance, space, cost, and
reliability. Moreover, this agile design must also consider
portable programming environments and other architectural
constraints in the system design. Being able to quickly and
precisely characterize the needs of an application in the early
stages of hardware design is an essential step toward converging
on the primary components of these increasingly heterogeneous
platforms.

As the processing units become highly specialized and the
architectural diversity within the system increases, the design
space increases exponentially, and traditional performance
prediction techniques fall short in various qualities. For
example, even before simulation, an architect may want to
quickly estimate the power, performance, and cost of a range

of components in domain-specific system on a chip (DSSoC)
against a broad range of workloads. Once the architect has
narrowed the design space, they can then represent the prototype
design with intricate specification in cycle-accurate simulators.
Similarly, functional emulation can proceed when there are
abstracted or unavailable software modules in the application.
Most simulation and emulation-based approaches are also
known to have limited scale, falling far short of the scale of
contemporary salable systems in high performance computing
(HPC) and enterprise facilities. Furthermore, simulation and
emulation require detailed representations of each application
that may need to be optimized for each specific architectural
option. For example, ideally, the compiler toolchain must be
able to lower specific application operations to new hardware
features being emulated like a new sqrt instruction or a deeper
write queue.

Analytical models, on the other hand, give application
developers more flexibility and speed in performance prediction,
including varying levels of abstraction and sensitivity analysis,
at the expense of accuracy. These models reduce the machine-
specific performance factors into a set of parameters that can
be embedded into equations representing the complexity of
computation and other important resources, such as memory.
For scientific applications, these equations are tailored to fit the
specifics of the algorithm and the hardware target. Traditionally,
to generalize and reuse the computational and communication
hardware characteristics that are common across commodity
systems, the community has used structured analytical models
like logP [1], BSP [2], and roofline [3]. Domain-specific
languages (DSL) for performance modeling [4] further reduce
the complexity of dealing directly with analytical equations
by allowing the creation of composable representations that
are interchangeable across different applications and architec-
tures. Among the most notable, Aspen [5] (Abstract Scalable
Performance Engineering Notation) defines a formal grammar
to describe program behavior (i.e., application model) and
hardware organization (i.e., machine model). Using these two
models, Aspen lets developers quickly query and analyze the
performance against various metrics and scenarios.

While DSL-based modeling frameworks like Aspen allow
the creation of reusable and portable analytical models that
make performance analysis and prediction easier for many
scientific applications, these tools are falling behind on the
rising complexity of the architectures. Similar to simulators,



hardware models in these approaches are usually restricted
to following specific architectural patterns [6] and lack the
extensibility and adaptability required to support rapid and
experimental design of emerging architectures.

To address this problem, we believe that a new hardware
representation is necessary. It should (a) allow building scalable
models by abstracting and reusing existing components to
reduce the overall complexity while providing more precise
predictions for larger systems and (b) describe the architecture
in a flexible and expressive way without decreasing the
modeling simplicity, especially during the early application
and hardware design process.

In this paper, we present FLAME (FLexible Abstract Machine
Expression), a graph-based machine representation methodol-
ogy to support a wide range of architectural organizations in
analytical models while allowing developers to define specific
components as abstractions or refine the level of detail for
a desired hardware part as necessary. FLAME relies on a
connected multi-layer graph topology [7] to describe the
hierarchical relation between multiple levels of abstraction
for a component and provides a formal definition to allow
automated tools to create performance predictions for important
metrics. The ultimate goal of FLAME is to be able to ”precisely”
identify the effects of proposed components at various levels
of an end-to-end system analysis.

Specifically, we make the following contributions.
• We present the design and implementation of FLAME: a

graph-based machine representation technique to increase
the expressiveness, precision, and flexibility of structured
analytical modeling schemes.

• We provide a description for the multi-layer graph repre-
sentation and design an accompanying class hierarchy to
represent the hardware components as nodes and edges
of the graph; and

• We demonstrate the capabilities of FLAME by predicting
the performance of scientific kernels on a multi-core CPU
modeled by FLAME.

II. BACKGROUND: PERFORMANCE MODELING

Application developers and architects rely on various pre-
diction techniques and tools to perform design decisions, and
each of them has specific advantages over another. Cycle-
accurate simulators, such as GEM5, SimpleScalar, and RSIM,

param n = 8192 // input size
param word = 16 // double complex
param a = 6.3 // constant for cache miss calculation
param P = 16 // number of threads
param Z = 2.1 * mega
data fftVolume [n * word]

kernel fft {
execute [P] "myloop"{
flops [(5 * (n/P) * log2(n/P))] as dp, simd, fmad
loads [((n/P*word)) * a * max(1, log((n/P)*word)/
log(Z))] from fftVolume

}
}

Listing 1: Aspen application model example for 1D FFT.

have been widely used to mimic the projected hardware
behavior with the ability to represent fine-granular architectural
characteristics at the expense of very slow execution times.
Functional simulators, on the other hand, allow faster emulation
of instruction set architectures (ISAs) on non-native devices;
however, they fail to provide timing information. Hardware
emulators rely on reconfigurable devices such as FPGAs to
speed up the simulation process and provide cycle-accurate
predictions but come at the cost of a tedious synthesis process.
Both simulation- and emulation-based approaches are usually
focused on modeling a single node and require extensive
knowledge of every component being modeled.

Analytical modeling is situated on the other extreme end
of the scale and targets to provide performance insight via
application and algorithm characterization. In this type of
performance prediction, the constituent parts of the application
are parameterized, and the critical path is represented with
equations that are dependent on algorithm-specific inputs
and hardware metrics. While many scientific applications
build their own custom performance models [8], [9], [10],
structural analytical models have been commonly used to
develop reusable techniques and abstractions. Numerous studies
have been proposed to synthesize modeling expressions [11],
describe hardware characteristics [12], and create DSL-based
application and machine representations [4] and design tools to
automate the process [13]. In this study we will be utilizing the
roofline model [3] and ASPEN [5] to build upon and evaluate
our work.

A. Roofline Model

In contrast to creating complex analytical representations,
the roofline model [3] helps developers identify the bounds
for compute and memory bottlenecks on a given architecture.
Instead of predicting the performance, roofline describes the
maximum throughput (i.e., GFlops/sec) of an application as a
function of its arithmetic intensity (i.e., Flops/byte).

GFlops/sec = min

{
Peak FLOPS
Mem. Bandwidth × Intensity

(1)

The roofline model, as shown in Equation 1, breaks the
architectural behavior into two regions: (a) the linear curve
where the performance is bounded by memory and (b) the
flat part where the computational capacity limits the attainable
throughput. Depending on application’s arithmetic intensity,
the effective performance falls under one of these regions. The
(a) region will also shift toward or away from the (b) region,
depending on how well the application optimizes memory
accesses.

B. Aspen

Aspen [5] is a popular DSL for structured analytical
performance modeling. The Aspen application model (AAM)
supports expressions to represent compute and memory char-
acteristics, input parameters, data structures, parallel regions,
kernel declarations, repetitive sections, and communicational



machine Keeneland {
node [120] sl390_node
interconnect qdrInfiniband

}
node sl390_node {
socket [2] intel_xeon_x5660
socket [3] nvidia_m2090

}
socket intel_xeon_e5_2698_v3 {
core [16] haswellCore
memory ddr4
cache haswellCache

}
core haswellCore {
param coreClock = 2.3 * giga
param issueRate = coreClock * 2
resource cycles(number) [number/coreClock]
resource flops(number) [number/issueRate]

with dp [base * 2],
simd [base / 8],
fmad [base / 2]

}
cache haswellCache {
property capacity [40 * mega]

}

Listing 2: Aspen machine model for Keeneland supercomputer.

requirements of an application. The Aspen machine model, on
the other hand, is used to declare the relation between cores,
memory, and interconnect and specify their throughput and
bandwidth values as well as supported features such as SIMD
capabilities and floating point precision.

Listings 1 and 2 give an example application model for 1D-
FFT and a machine model description for a supercomputing
cluster, respectively. In the application model the fft kernel is
represented in terms of floating point operations (flops) and
memory loads. The total counts of these two operations are
determined by the statements that use the application params
declared in the top portion of the model. The flops expression
declares three traits, dp, simd, and fmad, which can hint
the machine model to use accelerated performance metrics.
The model hierarchically lists all the main components of the
cluster top to bottom, and the parent components indicate the
count of each sub-component via either explicit numbers or
hardware params. The description for the core declares what
type of computational resources (e.g., cycles or flops) the
processing unit provides, along with all supported traits.

Aspen also provides analysis tools to produce performance
estimates and algorithm characteristics for a given application
and machine model pair. Several frameworks based on Aspen
extend its functionality to automatically create application
models [13], generate synthetic workloads [14], characterize
complex memory hierarchies [15] , perform hardware-software
optimization [16], and model extreme-scale workflows [17].

C. Motivation

This study focuses on increasing the expressiveness and
flexibility of machine representations in Aspen and other
analytical performance modeling frameworks. The hardware
description given in Listing 2 has the following limitations.

• A formally valid topology allows only specific patterns of
hardware organization. This type of restriction is common

Fig. 1: Multi-layer representation of a CPU socket in a CPU-
GPU system.

across both simulators and structured analytical models
and limits the scope of hardware (e.g., experimental,
nonconventional) that can be described.

• The level of detail achievable with the model is fixed. The
representation does not give the developers the ability
to dive deep into the specifics of a component for better
prediction accuracy or abstract some parts of the hardware
to reuse them in higher levels of the machine hierarchy.

• Complex interconnect infrastructure across components
cannot be properly modeled. Modern systems embed
various type of interconnects (e.g., NVLink, UPI, PCIe,
OPA, DMI) with non-uniform bandwidths, and current
models do not provide the flexibility to express such
advanced topologies.

In the rest of this paper, we present FLAME to address the
limitations imposed by the hardware models used in existing
performance prediction frameworks.

III. GRAPH-BASED MACHINE REPRESENTATION

Graph-based machine representation (FLAME) uses a con-
nected multi-layer graph to model the hardware. Wires (i.e.,
interconnects) are represented by edges, and any component
connected to an interconnect is represented by a node. Layers of
the graph are used for separating different levels of abstractions.

A. Hierarchical Component Topology

Figure 1 illustrates a CPU+GPU system described by our
proposed multi-layer graph-based machine representation. The
level of detail increases by each layer, and the connections
(i.e., edges) across layers maintain the relation between
abstracted and detailed versions of models. For example, in
the top-most layer, the lower CPU socket has three different



Fig. 2: Partial UML class diagram for graph-based representation.

connections: SMI (Scalable Memory Interconnect) channel for
DDR accesses, UPI (Ultrapath Interconnect) to communicate
with the other CPU socket, and PCIe bus to reach to the GPU.
However, because the CPU socket itself is abstracted in the
top layer, the exact point of connection with the chip is not
clear.

Inter-layer edges provide an alternate and detailed path for
modeling tools to follow, and they attach to the outlets specified
by the components (i.e., nodes) in the more detailed layer. For
example, in the middle layer, the integrated memory controller
(IMC), the UPI controller, and the PCIe controller declare
interfaces to route the connections attached from the outside of
the chip to the inside. The bottom-most layer further details the
sub-components of a core by rerouting the connection coming
from the ring buffer to the L2 cache inside the core.

FLAME allows multiple layers of abstractions for any unique
type of component in the system, and a fully detailed model
will look like a tree of layers. The modeling complexity of a
component is determined by the depth of the specific sub-tree
associated with that component.

B. Implementation

FLAME follows an object-oriented approach to express
a topological and semantical relationship between different
hardware components. Figure 2 depicts a partial UML diagram
that shows the node and edge hierarchy where the components
are derived from. FLAME comes with a predefined set of
abstract and leaf-level (i.e., non-abstract) class implementations
for common hardware. The model developers can extend the
abstract classes to build their own components and reuse the
leaf-level implementations as the sub-components of their
custom hardware.

Each non-abstract component (i.e., a node or an edge) needs
to declare a set of TRAITs that will later match with the
operations specified in the application model. TRAITs identify
the capabilities or features of a component and can also be

used to configure the common components that are already
implemented by FLAME.

A component should declare itself as a RESOURCE if it is
going to provide a quantifiable functionality (i.e., METRIC)
to the model. For example, if a CPU core supports floating
point operations, the corresponding class should implement
getSupportedMetrics() function to include FLOPS in
the list and also return a proper value when the predict()
function is called with FLOPS as the queried metric.

C. Performance Prediction

The predict() function is key to implementing flexible
and precise performance models with FLAME, and any
component extending the RESOURCE class needs to implement
it. The predict() function, as shown in Listing 3, takes three
parameters, a METRIC, a pointer to the Aspen Application
Model (AAM), and the METHOD and returns the value calculated
by the function.

FLAME provisions a hierarchical implementation of predict()
function: A component returns a predicted performance value
by using the measurements returned by predict functions of
its subcomponents. This structure allows a given architectural
organization at a specific level of abstraction to reuse existing
prediction implementations for more detailed layers while
considering the effects of the cross-component interaction at
the higher level on the overall performance.

The valid set of values for the METRIC parameter is
declared by the getSupportedMetrics() function, as
explained above, and FLAME allows components to implement
predict() for a wide range of metrics, such as performance,
power, cost, and latency. As the depth of a component’s layer
increases, the number of supported metrics will decrease, since
the hardware components will likely have a dedicated function

float predict(METRIC, AMM, METHOD);

Listing 3: The predict() function.



Fig. 3: Roofline model created for the experimental system.

to perform. For example, a CPU core will support both FLOPS
and IOPS, whereas an ALU will only support the latter.

The Aspen application model (AMM), the second parameter,
is a pointer to the root node of the abstract syntax tree (AST)
of the modeled application. AMM can correspond to a single
expression, a basic block, a kernel, or an entire application.
The supported granularity depends on the level of the hardware
component the predict() function is being implemented
on. For example, a CPU core can take an entire application
model, whereas an ALU will only accept expressions with
integer arithmetics in it. The predict() function in higher
level components is also responsible for breaking down the
parts of the supplied application model into sub-components.

The METHODs that the predict() function can use vary
by the characteristics of the underlying architecture, the targeted
accuracy of the predicted performance, and also the level of
effort that developer wants to spend in building the model. The
initial implementation of FLAME uses the popular roofline
model as the primary method of performance prediction. The
roofline model helps understanding computational and memory
bounds of a given system by characterizing the relationship
between arithmetic intensity and throughput.

IV. EVALUATION

To demonstrate the benefits of multi-layer graph-based
machine representation, we have performed experiments with a
matrix multiplication (matmul) kernel on a multi-core CPU and
compared them with the performance predictions for the three
different levels of hardware previously explained in Figure 1.
We used Aspen to describe an application model for matmul,
and we created machine representations for DRAM-only (top
layer), DRAM+L2 (middle layer), and DRAM+L2+L3 (bottom
layer) using the graph-based methodology formerly presented
in this study. Our goal is to show the effects of having different
levels of hardware details in the model on the prediction
accuracy.

We ran the baseline measurement on an Intel Xeon E5-2683
16-core CPU with 40 MB of shared L3 and 512KB per-core
L2 cache and 256GB of DDR4-2400 ram. We used a naive

Fig. 4: Attainable throughput values predicted by FLAME for
three different detail levels of component representations.

OpenMP implementation of dense matrix multiplication kernel
for baseline execution. To model the three different levels of
detail, we followed the steps below.

1) We run the Empirical Roofline Modeling (ERM) tool [18]
to measure practical boundaries for compute and memory
bandwidths on our experimental system. The tool uses a
synthetic benchmark to identify boundaries for two higher
levels of cache and the DRAM. The specific throughput
limits for our experimental system are depicted in Figure 3.

2) We then profile the matrix multiplication kernel to extract
L2 and L3 hit rates. We use these rates to obtain a
combined bandwidth value via a weighted average of
separately measured throughputs (which are obtained in
the previous step). The top layer directly uses the DRAM
bandwidth by assuming all memory accesses are misses,
and the middle and bottom layers use DDR+L2 and
DDR+L2+L3 bandwidths, respectively.

3) We integrate the throughput values into the predict()
functions of hardware components, machine, socket, and
core, to reflect the memory bandwidth properly at each
level of detail.

Figure 4 shows the attainable throughput predictions for
the matmul kernel using the three different levels of hardware
abstractions. The cache-specific throughput behavior observed
by the ERM tool for synthetic kernels is also reflected by the

Fig. 5: Prediction error percentages against actual execution.



estimations for the matmul kernel using models created with
FLAME. As the arithmetic intensity increases with larger input
sizes, the throughput is bottlenecked by the computational
limits.

The results given in Figure 5 show the prediction error rates
against the actual execution of the OpenMP-based matmul
kernel. Although the prediction accuracy for smaller input
sizes is low, the difference between error percentages for a
given input matrix dimension is consistent with the level of
detail provided by each model.

Our experiments demonstrate the feasibility of using different
abstraction levels by trading modeling complexity for increased
accuracy. It is essential to note that FLAME targets for
precision, not accuracy, and therefore able to represent the
relative difference between multiple detail levels correctly while
resulting in less accurate predictions, especially for small input.

V. ADDITIONAL RELATED WORK

Many scientific high performance computing (HPC) appli-
cations [8], [9], [10] develop analytical models to estimate
scalability of the workload across large supercomputers. A
few functional [19] and communication-oriented HPC simula-
tors [20], [21] have been developed to provide more organized
and reusable solutions.

Several studies [4], [22], [13], [23], [11], [24] propose tools
and techniques based on DSLs for performance modeling.
They provide compiler support for annotated model description,
generating representations directly from source code, and auto-
instrumentation for runtime performance model creation. In
general, these tools deal with application modeling only and
do not provide support for machine representation.

VI. CONCLUSION

In this study we have introduced FLAME, a flexible machine
model representation for structured analytical performance
modeling. Different from prior studies, FLAME provides a
multi-layer graph-based representation to express a wide range
of computing hardware using an extensible component class
hierarchy.

FLAME uniquely allows a hardware sub-component at any
level in the component hierarchy to be abstracted so that the
underlying prediction methodologies can be utilized by higher
level components. We demonstrate the abstraction capabilities
of FLAME on a multi-core system for a matrix multiplication
kernel on three machine models with different detail levels.

We believe FLAME is a powerful technique and will play a
major role in structured analytical modeling as it becomes more
commonly implemented for different application and machine
models.
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